Home
Class 12
MATHS
Evaluate: (i) int(e^(sqrt(x))cos(e^(sqrt...

Evaluate: (i) `int(e^(sqrt(x))cos(e^(sqrt(x))))/(sqrt(x))\ dx` (ii) `int(cos^5x)/(sinx)\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the integrals step by step. ### (i) Evaluate the integral: \[ I_1 = \int \frac{e^{\sqrt{x}} \cos(e^{\sqrt{x}})}{\sqrt{x}} \, dx \] **Step 1: Substitution** Let \( t = e^{\sqrt{x}} \). Then, differentiate both sides with respect to \( x \): \[ \frac{dt}{dx} = e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}} \implies dt = \frac{e^{\sqrt{x}}}{2\sqrt{x}} \, dx \implies dx = 2\sqrt{x} \frac{dt}{e^{\sqrt{x}}} \] **Step 2: Rewrite the integral** Substituting \( e^{\sqrt{x}} = t \) and \( dx = 2\sqrt{x} \frac{dt}{t} \): \[ I_1 = \int \cos(t) \cdot 2 \, dt = 2 \int \cos(t) \, dt \] **Step 3: Integrate** The integral of \( \cos(t) \) is \( \sin(t) \): \[ I_1 = 2 \sin(t) + C \] **Step 4: Substitute back** Substituting back \( t = e^{\sqrt{x}} \): \[ I_1 = 2 \sin(e^{\sqrt{x}}) + C \] ### Final Answer for (i): \[ I_1 = 2 \sin(e^{\sqrt{x}}) + C \] --- ### (ii) Evaluate the integral: \[ I_2 = \int \frac{\cos^5 x}{\sin x} \, dx \] **Step 1: Rewrite the integral** Rewrite \( \cos^5 x \) as \( \cos^4 x \cdot \cos x \): \[ I_2 = \int \frac{\cos^4 x \cdot \cos x}{\sin x} \, dx \] **Step 2: Use substitution** Let \( t = \sin x \). Then, differentiate: \[ \frac{dt}{dx} = \cos x \implies dt = \cos x \, dx \implies dx = \frac{dt}{\cos x} \] **Step 3: Rewrite \( \cos^4 x \)** Using the identity \( \cos^2 x = 1 - \sin^2 x \): \[ \cos^4 x = (1 - t^2)^2 \] Thus, \[ I_2 = \int \frac{(1 - t^2)^2 \cdot \cos x}{t} \cdot \frac{dt}{\cos x} = \int \frac{(1 - t^2)^2}{t} \, dt \] **Step 4: Expand and separate the integral** Expanding \( (1 - t^2)^2 \): \[ (1 - t^2)^2 = 1 - 2t^2 + t^4 \] So, \[ I_2 = \int \left( \frac{1}{t} - 2t + t^3 \right) dt \] **Step 5: Integrate** Now, integrate term by term: \[ I_2 = \int \frac{1}{t} \, dt - 2 \int t \, dt + \int t^3 \, dt \] This gives: \[ I_2 = \ln |t| - t^2 + \frac{t^4}{4} + C \] **Step 6: Substitute back** Substituting \( t = \sin x \): \[ I_2 = \ln |\sin x| - \sin^2 x + \frac{\sin^4 x}{4} + C \] ### Final Answer for (ii): \[ I_2 = \ln |\sin x| - \sin^2 x + \frac{\sin^4 x}{4} + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(e^(sqrt(x))cos(e^(sqrt(x))))/(sqrt(x))dx

Evaluate: int(e^(sqrt(x))cos(e^(sqrt(x))))/(sqrt(x))dx

Evaluate: int(e^(sqrt(x))"cos"(e^(sqrt(x))))/(sqrt(x))dx

int e^(3sqrt(x))dx

Evaluate : int_(0)^(1)(e^(sqrt(x)))/(sqrt(x))dx

Evaluate: int(cos^5x)/(sinx)\ dx

Evaluate: int cos^(-1)sqrt(x)dx

Evaluate: (i) int(1-x)sqrt(x)\ dx (ii) int(sqrt(x)+1/(sqrt(x)))^2\ dx

Evaluate: int(cos^5x)/(sinx)dx

Evaluate : int ( sqrt(4-5x) ) dx