Home
Class 12
MATHS
(i) int(e^(x))/(1+e^(x))dx" "(ii) ...

`(i) int(e^(x))/(1+e^(x))dx" "(ii) int (e^(x)) /((1+e^(x))^(4))dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the integrals step by step. ### (i) Integral of \( \frac{e^x}{1 + e^x} \, dx \) 1. **Substitution**: Let \( t = 1 + e^x \). Then, differentiate both sides: \[ dt = e^x \, dx \quad \Rightarrow \quad dx = \frac{dt}{e^x} \] Since \( e^x = t - 1 \), we can substitute: \[ dx = \frac{dt}{t - 1} \] 2. **Rewrite the integral**: Substitute \( t \) into the integral: \[ \int \frac{e^x}{1 + e^x} \, dx = \int \frac{e^x}{t} \cdot \frac{dt}{e^x} = \int \frac{1}{t} \, dt \] 3. **Integrate**: The integral of \( \frac{1}{t} \) is: \[ \int \frac{1}{t} \, dt = \ln |t| + C \] 4. **Back-substitute**: Replace \( t \) back with \( 1 + e^x \): \[ \ln |1 + e^x| + C \] Thus, the final answer for the first integral is: \[ \int \frac{e^x}{1 + e^x} \, dx = \ln(1 + e^x) + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

(iii) int(e^(x)-1)/(1-e^(-x))dx

int (e^(x))/(e^(x) + e^(-x))dx

int(e^x+1/(e^x))^2\ dx

inte^x/(e^x+e^(-x))dx

int(e^x)/((1+e^x)(2+e^x))dx

int(e^x+1/(e^x))^2dx

(i) int (e^(x) .(1-x))/(x^(2))dx (ii) int ((1+sin x)/(1+cos x))e^(x) dx

Evaluate the following: (i) int(sec^(2)x)/(3+tanx)dx " (ii) " int(e^(x)-e^(-x))/(e^(x)+e^(-x))dx (iii) int(1-tanx)/(1+tanx)dx " (iv) " int(1)/(1+e^(-x))dx

inte^x/((1+e^x)(e+e^x))dx

int(1)/(e^(-x)) dx