Home
Class 12
MATHS
intcos^(2) x dx...

`intcos^(2) x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos^2 x \, dx \), we can use a trigonometric identity to simplify the integrand. Here’s a step-by-step solution: ### Step 1: Use the Trigonometric Identity We know from trigonometric identities that: \[ \cos 2x = 2 \cos^2 x - 1 \] From this, we can express \( \cos^2 x \) in terms of \( \cos 2x \): \[ \cos^2 x = \frac{\cos 2x + 1}{2} \] ### Step 2: Substitute into the Integral Now we substitute this expression for \( \cos^2 x \) into the integral: \[ \int \cos^2 x \, dx = \int \frac{\cos 2x + 1}{2} \, dx \] ### Step 3: Factor Out the Constant We can factor out the constant \( \frac{1}{2} \): \[ \int \cos^2 x \, dx = \frac{1}{2} \int (\cos 2x + 1) \, dx \] ### Step 4: Split the Integral Now we can split the integral into two parts: \[ \int \cos^2 x \, dx = \frac{1}{2} \left( \int \cos 2x \, dx + \int 1 \, dx \right) \] ### Step 5: Integrate Each Part Now we can integrate each part separately: - The integral of \( \cos 2x \) is: \[ \int \cos 2x \, dx = \frac{\sin 2x}{2} \] - The integral of \( 1 \) is: \[ \int 1 \, dx = x \] ### Step 6: Combine the Results Putting it all together, we have: \[ \int \cos^2 x \, dx = \frac{1}{2} \left( \frac{\sin 2x}{2} + x \right) + C \] This simplifies to: \[ \int \cos^2 x \, dx = \frac{\sin 2x}{4} + \frac{x}{2} + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \cos^2 x \, dx = \frac{\sin 2x}{4} + \frac{x}{2} + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

intcos^2n x\ dx

intcos^4 2x\ dx

Evaluate: intcos^2x\ dx

Obtain the reduction formula for intcos^(n)xdx

intcos^(3)x" " dx=

Evaluate intcos^2xdx

If intcos^(7) xdx =Asin^(7)x+Bsin^(5)x+C sin^(3)x+sinx+k , then

We can sometimes use trigonometric identities to transform integrals. The integral formulas for sin^(2)x and cos^(2)x arise frequently in applications. Evaluate: intcos^(2)xdx

intcos^5x dx

Evaluate intcos^(3)xdx.