Home
Class 12
MATHS
int(2x-1)/(sqrt(x^(2)-x-1))dx...

`int(2x-1)/(sqrt(x^(2)-x-1))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{2x - 1}{\sqrt{x^2 - x - 1}} \, dx \), we can follow these steps: ### Step 1: Set up the integral Let: \[ I = \int \frac{2x - 1}{\sqrt{x^2 - x - 1}} \, dx \] ### Step 2: Substitute for the denominator We will let \( t = x^2 - x - 1 \). Now, we need to differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = 2x - 1 \] Thus, we can express \( dx \) in terms of \( dt \): \[ dt = (2x - 1) \, dx \implies dx = \frac{dt}{2x - 1} \] ### Step 3: Substitute in the integral Substituting \( t \) and \( dx \) into the integral gives: \[ I = \int \frac{dt}{\sqrt{t}} \] ### Step 4: Simplify the integral The integral can be rewritten as: \[ I = \int t^{-\frac{1}{2}} \, dt \] ### Step 5: Integrate Now we integrate: \[ I = \frac{t^{\frac{1}{2}}}{\frac{1}{2}} + C = 2t^{\frac{1}{2}} + C \] ### Step 6: Substitute back for \( t \) Now we substitute back \( t = x^2 - x - 1 \): \[ I = 2\sqrt{x^2 - x - 1} + C \] ### Final Answer Thus, the solution to the integral is: \[ \int \frac{2x - 1}{\sqrt{x^2 - x - 1}} \, dx = 2\sqrt{x^2 - x - 1} + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(x+1)/(sqrt(2x^(2)+x-3))dx

Evaluate: int(2x+1)/(sqrt(x^2+2x-1))dx

int(1)/(sqrt(2x^(2)+3x-2))dx

Evaluate: int(2x+1)/sqrt(x^2+2x-1)dx

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx

Evaluate the following integrals : (i) int(1)/((x+1)sqrt(2x-3))dx (ii) int(1)/((x+1)sqrt(x^(2)+x-1))dx (iii) int(1)/((x^(2)+3x+3)sqrt(x+1))dx (iv) int(1)/((x^(2)-3x+2)sqrt(x^(2)-2))dx

Evaluate: int(x+1)/(sqrt(2x-1))\ dx

int(1)/((x-1)sqrt(x^(2)-1))dx equals

Evaluate: int(x-1)sqrt (x^2-2x)dx