Home
Class 12
MATHS
int(0)^(pi//2) x sinx cos x dx=?...

`int_(0)^(pi//2) x sinx cos x dx=?`

A

`(pi)/(4)`

B

`(pi)/(8)`

C

`(pi)/(12)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} x \sin x \cos x \, dx \), we will use the property of integration that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] ### Step 1: Apply the property of integration Let \( a = 0 \) and \( b = \frac{\pi}{2} \). Therefore, we can write: \[ I = \int_{0}^{\frac{\pi}{2}} x \sin x \cos x \, dx = \int_{0}^{\frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \sin\left( \frac{\pi}{2} - x \right) \cos\left( \frac{\pi}{2} - x \right) \, dx \] ### Step 2: Simplify the integrand Using the identities \( \sin\left( \frac{\pi}{2} - x \right) = \cos x \) and \( \cos\left( \frac{\pi}{2} - x \right) = \sin x \), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \cos x \sin x \, dx \] ### Step 3: Expand the integral Now, we can expand this integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\pi}{2} \cos x \sin x \, dx - \int_{0}^{\frac{\pi}{2}} x \cos x \sin x \, dx \] Notice that the second integral on the right side is again \( I \): \[ I = \frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \cos x \sin x \, dx - I \] ### Step 4: Rearranging the equation Now, we can rearrange the equation to isolate \( I \): \[ 2I = \frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \cos x \sin x \, dx \] ### Step 5: Evaluate the integral \( \int_{0}^{\frac{\pi}{2}} \cos x \sin x \, dx \) To evaluate \( \int_{0}^{\frac{\pi}{2}} \cos x \sin x \, dx \), we can use the substitution \( u = \sin x \), then \( du = \cos x \, dx \). The limits change from \( x = 0 \) to \( x = \frac{\pi}{2} \), which corresponds to \( u = 0 \) to \( u = 1 \): \[ \int_{0}^{\frac{\pi}{2}} \cos x \sin x \, dx = \int_{0}^{1} u \, du = \left[ \frac{u^2}{2} \right]_{0}^{1} = \frac{1}{2} \] ### Step 6: Substitute back into the equation for \( I \) Now substituting back into our equation for \( I \): \[ 2I = \frac{\pi}{2} \cdot \frac{1}{2} \] \[ 2I = \frac{\pi}{4} \] ### Step 7: Solve for \( I \) Dividing both sides by 2 gives: \[ I = \frac{\pi}{8} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} x \sin x \cos x \, dx = \frac{\pi}{8} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7s|19 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.1|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x sin x cos x dx

(i) int_(0)^(pi//2) x sin x cos x dx (ii) int_(0)^(pi//6) (2+3x^(2)) cos 3x dx

int_(0)^(pi//6) cos x cos 3x dx

int_(0)^(pi//2) x^(2) cos x dx

int_(0)^(pi) x sin x cos^(2)x\ dx

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then

Integrate the following functions int_(0)^(pi//2) " cos x dx"

int_(0)^(pi) x log sinx dx

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

int_(0)^(pi//2) sqrt(1- cos 2x) dx