Home
Class 12
MATHS
("lim")(xvec0)[(sin(sgn(x)))/((sgn(x)))]...

`("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))],` where`[dot]` denotes the greatest integer function, is equal to (a)0 (b) 1 (c) `-1` (d) does not exist

A

`^(2n)p_(n)`

B

`^(2n)C_(n)`

C

`(2n)!`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`underset(xto0^(+))lim[(sin(sgnx))/(sgn(x))]=underset(xto0^(+))lim[(sin1)/(1)]=0`
`underset(xto0^(-))lim[(sin(sgnx))/(sgn(x))]`
`=underset(xto0^(-))lim[sin(-1)/(-1)]`
`=underset(xto0^(-))lim[sin1]`
Hence, the given limit is 0.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise (Multiple)|18 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.8|8 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

("lim")_(xvec1)(xsin(x-[x]))/(x-1),w h e r e[dot] denotes the greatest integer function is equal to (a) 0 (b) -1 (c) not exist (d) none of these

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

Knowledge Check

  • int_(0)^(1)[2x]dx where [] is the greatest integer function :

    A
    1
    B
    `(1)/(4)`
    C
    `(1)/(3)`
    D
    `(1)/(2)`.
  • Similar Questions

    Explore conceptually related problems

    Evaluate ("lim")_(xvec(5pi)/4) [sinx+cosx], where [.] denotes the greatest integer function.

    If [dot] denotes the greatest integer function, then (lim)_(xvec0)x/a[b/x] b/a b. 0 c. a/b d. does not exist

    Evaluate: ("lim")_(xrarr0) (sin[cosx])/(1+[cosx])([dot] denotes the greatest integer function).

    lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot] represents the greatest integer function). (a) -1 (b) 1 (c) 0 (d) does not exist

    ("lim")_(xvec0)[min(y^2-4y+11)(sinx)/x](w h e r e[dot]d e not e st h e greatest integer function is 5 (b) 6 (c) 7 (d) does not exist

    lim_(xto1) [cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the greatest integer function) is equal to

    Evaluate: int_0^((5pi)/(12))[tanx]dx , where [dot] denotes the greatest integer function.