Home
Class 12
MATHS
The expression (tan(x-(pi)/(2)).cos((3...

The expression
`(tan(x-(pi)/(2)).cos((3pi)/(2)+x)-sin^(3)((7pi)/(2)-x))/(cos(x-(pi)/(2)).tan((3pi)/(2)+x))`simplifies to

A

`(1+cos^(2)x)`

B

`sin^(2)x`

C

`-(1+cos^(2)x)`

D

`cos^(2)x`

Text Solution

Verified by Experts

The correct Answer is:
B

`(tan.(x-(pi)/(2)).cos.((3pi)/(2)+x)-sin^(3)((7pi)/(2)-x))/(cos(x-(pi)/(2)).tan((3pi)/(2)+x))`
`=((-cot)(sin x)+cos^(3)x)/((sin x).(-ct x))`
`=(-cos x + cos^(3)x)/(-cos x)`
`=1-cos^(2)x`
`=sin^(2)x`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|2 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(-(pi)/(2))^((pi)/(2))(cos^3x)/(1+3^x)dx .

the expression (1+sin2alpha)/(cos(2alpha-2pi)tan(alpha-(3pi)/4))-1/4sin2alpha(cot(alpha/2)+cot((3pi)/2+alpha/2)) simplifies and reduces to

Knowledge Check

  • The value of int_(-(pi)/(2)) ^((pi)/(2)) sin^(2) x cos x dx is

    A
    `(3)/(2)`
    B
    `(1)/(2)`
    C
    0
    D
    `(2)/(3)`
  • Similar Questions

    Explore conceptually related problems

    Prove that cos ((3pi)/(4)+x)-cos ((3pi)/(4)-x)=-sqrt2 sin x

    sin ^(2) " (pi)/(6) + cos ^(2) "" (pi)/(3) - tan ^(2) " (pi)/(4) =- 1/2

    cos ((3pi )/( 2 ) + x) cos (2pi + x) [cot ((3pi)/( 2)- x ) + cot (2pi +x) ]=1

    Prove that cos^(2)x + cos^(2)(x + (pi)/(3)) + cos^(2) (x - (pi)/(3)) = (3)/(2)

    If x=sin(theta+(7pi)/(12))+sin(theta-pi/(12))+sin(theta+(3pi)/(12))dot Y=cos(theta+(7pi)/(12))+cos(theta-pi/(12))+cos(theta+(3pi)/(12))dot then prove that X/Y-Y/X=2tan2theta

    Prove that the value of each the following determinants is zero: |sin^2(x+(3pi)/2)sin^2(x+(5pi)/2)sin^2(x+(7pi)/2)sin^(x+(3pi)/2)sin^(x+(5pi)/2)sin^(x+(7pi)/2)sin^(x-(3pi)/2)sin^(x- (5pi)/2)sin^(x-(7pi)/2)|

    (cos (pi +x) cos (-x))/( sin (pi -x) cos ((pi )/(2) + x))= cot ^(2) x