Home
Class 12
MATHS
y=f(x) satisfies the relation int(2)^(x)...


`y=f(x)` satisfies the relation `int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt`
The range of `y=f(x)` is (a) `[0,∞)` (b)` R ` (c)` (−∞,0]` (d) `[−1/2,1/2]`

A

`[0,oo)`

B

`R`

C

`(-oo,0]`

D

`[-1/2,1/2]`

Text Solution

Verified by Experts

The correct Answer is:
D

`int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt`
Differentiating w.r.t `x` we get

`f(x)=x+(-x^(2)f(x))`
or `f(x)[1+x^(2)]=x`
Let `y=f(x)=x/(1+x^(2))`
or `yx^(2)-x+y=0`
Since `x` is real `Dge0`
or `1-4y^(2)ge0`
or `y epsilon [-1/2,1/2]`
Also `f(x)` is an odd funtion. Hence `int_(-2)^(2)f(x)dx=0`
`f'(x)=(1+x^(2)-2x^(2))/(1+x^(2))-(1-x^(2))/(1+x^(2))ge0`
or `x^(2)-1le0`
or `x epsilon[-1,1]`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise MCQ_TYPE|27 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of int_(-2)^(2)f(x)dx is

If int_(0)^(x) f(t)dt=x+int_(x)^(1)t f(t)dt , find the value of f(1).

If int_(0)^(x)f(t)dt=x^2+int_(x)^(1)t^2f(t)dt , then f((1)/(2)) is equal to

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

if int_0^(x^2(1+x))f(t)dt=x then the value of 10f(2) must be

f(x) satisfies the relation f(x)-lambdaint_0^(pi//2)sinx*costf(t)dt=sinx If lambda > 2 then f(x) increases in

f(x) satisfies the relation f(x)-lambdaint_0^(pi//2)sinx*costf(t)dt=sinx If lambda > 2 then f(x) decreases in

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

f(x) satisfies the relation f(x)-lamda int_(0)^(pi//2)sinxcostf(t)dt=sinx If f(x)=2 has the least one real root, then