Home
Class 12
MATHS
If x in R,a(i),b(i),c(i) in R for i=1,2,...

If `x in R,a_(i),b_(i),c_(i) in R` for `i=1,2,3` and `|{:(a_(1)+b_(1)x,a_(1)x+b_(1),c_(1)),(a_(2)+b_(2)x,a_(2)x+b_(2),c_(2)),(a_(3)+b_(3)x,a_(3)x+b_(3),c_(3)):}|=0`, then which of the following may be true ?

A

`x=1`

B

`x=-1`

C

`|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

`(a,b,c)` `|{:(a_(1)+b_(1)x,a_(1)x+b_(1),c_(1)),(a_(2)+b_(2)x,a_(2)x+b_(2),c_(2)),(a_(3)+b_(3)x,a_(3)x+b_(3),c_(3)):}|=0`
`impliesunderset(D_(1))(|{:(a_(1),a_(1)x+b_(1),c_(1)),(a_(2),a_(2)x+b_(2),c_(2)),(a_(3),a_(3)x+b_(3),c_(3)):}|)+underset(D_(2))(|{:(b_(1)x,a_(1)x+b_(1),c_(1)),(b_(2)x,a_(2)x+b_(2),c_(2)),(b_(3)x,a_(3)x+b_(3),c_(3)):}|)=0`
Applying `C_(2)toC_(2)-xC_(1)` in `D_(1)` and taking `x` common from `C_(1)` in `D_(2)`.
`implies|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|+x|{:(b_(1),a_(1)x+b_(1),c_(1)),(b_(2),a_(2)x+b_(2),c_(2)),(b_(3),a_(3)x+b_(3),c_(3)):}|=0`
Applying `C_(2)toC_(2)-C_(1)` and then taking `x` common from `C_(2)` in `D_(2)`
`implies|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|+x^(2)|{:(b_(1),a_(1),c_(1)),(b_(2),a_(2),c_(2)),(b_(3),a_(3),c_(3)):}|=0`
`implies(1-x^(2))|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0`
`impliesx=+-1`, or `|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Single correct Answer|42 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos

Similar Questions

Explore conceptually related problems

Applying vectors , show that (a_(1)b_(1)+a_(2)b_(2)+a_(3)b_(3))^(2)le (a_(1)^(2)+a_(2)^(2)+a_(3)^(2))(b_(1)^(2)+b_(2)^(2)+b_(3)^(2))

Represent the following equations in matrix form: a_(1)x+b_(1)y+c_(1)z=k_(1) a_(2)x+b_(2)y+c_(2)z=k_(2) a_(3)x+b_(3)y+c_(3)z=k_(3)

Knowledge Check

  • If the determinant of the matrix [(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))] is denoted by D, then the determinant of the matrix [(a_(1)+3b_(1)-4c_(1),b_(1),4c_(1)),(a_(2)+3b_(2)-4c_(2),b_(2),4c_(2)),(a_(3)+3b_(3)-4c_(3),b_(3),4c_(3))] will be -

    A
    D
    B
    2D
    C
    3D
    D
    4D
  • For any three sets A_(1), A_(2), A_(3) let B_(1)= A_(1) , B_(2) =A_(2) -A_(1) and B_(3) =A_(3) -(A_(1) uuA_(2)): then which one of the following statement is always true ?

    A
    `A_(1)uuA_(2) uuA_(3) sub B_(1) uuB_(2) B_(3)`
    B
    `A_(1)uuA_(2)uuA_(3) =B_(1) uuB_(2) uuB_(3)`
    C
    `A_(1) uu A_(2) uuA_(3) sub B_(1) B_(2) uuB_(3)`
    D
    none of these
  • If |(a+a_(1)x,1+b_(1)x,1+c_(1)x),(1+a_(2)x,1+b_(2)x,1+c_(2)x),(1+a_(3)x,1+b_(3)x,1+c_(3)x)|=A_(0)+A_(1)x+A_(2)x^(2)+A_(3)x^(3) , then the value of A_(1) is -

    A
    `a_(1)a_(2)a_(3)+b_(1)b_(2)b_(3)+c_(1)c_(2)c_(3)`
    B
    0
    C
    1
    D
    -1
  • Similar Questions

    Explore conceptually related problems

    If (1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n) . Which of the following is true for 1 lt r lt 2n

    Find the coordinates of the centriod of the triangle whose vertices are ( a_(1), b_(1), c_(1)) , (a_(2), b_(2), c_(2)) and (a_(3), b_(3), c_(3)) .

    If (x+1/x+1)^(6)=a_(0)+(a_(1)x+(b_(1))/(x))+(a_(2)x^(2)+(b_(2))/(x^(2)))+"...."+(a_(6)x^(6)+(b_(6))/(x^(6))) , then

    If a_(r)= (cos 2r pi + i sin 2r pi)^(1/9) . Then the value of |(a_(1),a_(2),a_(3)),(a_(4),a_(5),a_(6)),(a_(7),a_(8),a_(9))| is

    If a_(i) , i=1,2,…..,9 are perfect odd squares, then |{:(a_(1),a_(2),a_(3)),(a_(4),a_(5),a_(6)),(a_(7),a_(8),a_(9)):}| is always a multiple of