Home
Class 12
MATHS
int(0)^(pi)[cotx]dx, where [.] denotes t...

`int_(0)^(pi)[cotx]dx,` where [.] denotes the greatest integer function, is equal to

A

`(pi)/2`

B

`1`

C

`-1`

D

`-(pi)/2`

Text Solution

Verified by Experts

The correct Answer is:
D

Let `I=int_(0)^(pi)[cotx]dx` …………..i
`=int_(0)^(pi)[cot(pi-x)]dx=int_(0)^(pi)[-cotx]dx`………….ii
Adding i and ii we get
`2I=int_(0)^(pi)[cotx] dx+int_(0)^(pi)[-cotx]dx=int_(0)^(pi)(-1)dx`
[since `[x]+[-x]` is equal to `-1` if `x !inZ` and is equal to 0 if `x epsilonZ`]
`=[-x]_(0)^(pi)=-pi`
`:.I=-(pi)/2`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

lim_(xto1) (xsin(x-[x]))/(x-1) , where [.] denotes the greatest integer function, is equal to

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

Knowledge Check

  • lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )

    A
    is equal to 0
    B
    is equal to 1
    C
    does not exist
    D
    none of these
  • [x] denote the greatest integer function. int_(0)^(pi)[cosx]dx is equal to-

    A
    1
    B
    `-1`
    C
    `-(pi)/(2)`
    D
    `(pi)/(2)`
  • int_0^infty[2/l^x] dx where [] denotes the greatest intger equals

    A
    `In2`
    B
    `l^2`
    C
    0
    D
    `2/l`
  • Similar Questions

    Explore conceptually related problems

    Evaluate: int_(-pi/2)^(2pi)[cot^(-1)x]dx , where [dot] denotes the greatest integer function

    Evaluate: int_(-pi/2)^(2pi)[cot^(-1)x]dx , where [dot] denotes the greatest integer function

    I=int_0^2x[2x]dx where [.] denotes the greatest integer function then the value of 16/17I must be

    The integral int_0^(1. 5)[x^2]dx ,w h e r e[dot] denotoes the greatest integer function, equals ...........

    Evaluate: int_0^((5pi)/(12))[tanx]dx , where [dot] denotes the greatest integer function.