Home
Class 12
MATHS
Let f be a non-negative function defined...

Let `f` be a non-negative function defined on the interval `[0,1]`. If `int_0^xsqrt(1-(f^(prime)(t))^2)dt=int_0^xf(t)dt ,0lt=xlt=1,a n d \ f(0)=0`, then

A

`f(1/2)lt 1/2` and `f(1/3)gt 1/3`

B

`f(1/2)gt 1/2` and `f(1/3)gt1/3`

C

`f(1/2)lt1/2` and `f(1/3)lt1/3`

D

`f(1/2)gt 1/2` and `f(1/3)lt 1/3`

Text Solution

Verified by Experts

The correct Answer is:
C

`f'=+-sqrt(1-f^(2))`
or `f(x)=sinx `or `f'(x)=-sinx` (not possible)
`:. f(x)=sinx`
Also `xgtsinxAAxgt0`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise JEE MAIN|12 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f be a real-valued function defined on the inverval (-1,1) such that e^(-x)f(x)=2+int_0^xsqrt(t^4+1)dt , for all, x in (-1,1) and let f^(-1) be the inverse function of fdot Then (f^(-1))^'(2) is equal to (a) 1 (b) 1/3 (c) 1/2 (d) 1/e

If f(x)=int_0^x(sint)/t dt ,x >0, then

Knowledge Check

  • If m, n in R , then the value of I(m,n)=int_(0)^(1) t^(m)(1+t)^(n)dt is -

    A
    `(n)/(1+m)I[(m+1),(n-1)]`
    B
    `(2^(n))/(1+m)-(n)/(m+1)I[(m+1), (n-1)]`
    C
    `(m)/(n+1)I[(m+1),(n-1)]`
    D
    `(2^(n))/(1+m)-(m)/(n+1)I[(m+1),(n-1)]`
  • Similar Questions

    Explore conceptually related problems

    Let f be a real-valued function defined on interval (0,oo) ,by f(x)=lnx+int_0^xsqrt(1+sint).dt . Then which of the following statement(s) is (are) true? (A). f"(x) exists for all in (0,oo) . " " (B). f'(x) exists for all x in (0,oo) and f' is continuous on (0,oo) , but not differentiable on (0,oo) . " " (C). there exists alpha>1 such that |f'(x)|<|f(x)| for all x in (alpha,oo) . " " (D). there exists beta>1 such that |f(x)|+|f'(x)|<=beta for all x in (0,oo) .

    If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

    Ifint_(pi/3)^xsqrt((3-sin^2t))dt+int_0^ycostdt=0,then evaluate (dy)/(dx)

    Let f(x) be a non-constant twice differentiable function defined on (-oo,oo) such that f(x)=f(1-x)a n df^(prime)(1/4)=0. Then (a) f^(prime)(x) vanishes at least twice on [0,1] (b) f^(prime)(1/2)=0 (c) int_(-1/2)^(1/2)f(x+1/2)sinxdx=0 (d) int_(-1/2)^(1/2)f(t)e^(sinpit)dt=int_(1/2)^1f(1-t)e^(sinpit)dt

    Let f:(0,oo)vec(0,oo) be a differentiable function satisfying, xint_0^x(1-t)f(t)dt=int_0^x tf(t)dtx in R^+a n df(1)=1. Determine f(x)dot

    Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval

    Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of lim_(x to 0)(cosx)/(f(x)) is equal to where [.] denotes greatest integer function