Home
Class 12
MATHS
For each positive integer n , let yn=1...

For each positive integer `n` , let `y_n=1/n((n+1)(n+2).....(n+n))^(1/n)` For `x in R` let `[x]` be the greatest integer less than or equal to `x` . If `(lim)_(n->oo)y_n=L` , then the value of `[L]` is ______.

Text Solution

Verified by Experts

The correct Answer is:
1

`y_(n)=[((n+1)(n+2)………(n+n))/(n^(n))]^(1//n)`
`impliesy_(n)=((n+1)/n . (n+2)/n . ………… .(n+n)/n)^(1/n)`
`:. logy_(n)=log((n+1)/n . (n+2)/n. ………… . (n+n)/n)^(1/n)`
`=1/nsum_(r=1)^(n)"log"(n+r)/n`
`=1/nsum_(r=1)^(n)log(1+r/n)`
`:. log_(nto oo) logy_(n)=lim_(n to oo) 1/n sum_(r=1)^(n)log(1+r/n)`
`:.log(lim_(nto oo) y_(n))=int_(0)^(1)log(1+x)dx`
`:.logL=int_(1)^(2)logx dx`
`=|xlogx-x|_(1)^(2)-2log2-1`
`="log"4/e`
`implies L=4/e`
`implies[L]=1`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise JEE MAIN|12 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let [x] denote the greatest integer less than or equal to x for any real number x. Then lim_(n to oo) ([n sqrt(2)])/(n) is equal to

Let [x] denote the greatest integer less than or equal to x for any real number x. Then underset(n tooo)lim([nsqrt(2)])/(n) is equal to-

Knowledge Check

  • For a positive integer n let a(n)=1+1/2+1/3+1/4+.......+1/((2^n)-1) then

    A
    `a(100)lt100`
    B
    `a(100)gt100`
    C
    `a(200)lt100`
    D
    `a(200)gt100`
  • The greatest positive integer divides (n+1)(n+2)..........(n+r) is

    A
    a) r
    B
    b) r!
    C
    c) (n+r)
    D
    d) (r+1)
  • For a positive integer n let a(n)=1+1/2+1/3+1/4+….+1/ ((2^n)-1) Then

    A
    `a(100)le 100`
    B
    `a(100)gt100`
    C
    `a(200)le100`
    D
    `a(200)le100`
  • Similar Questions

    Explore conceptually related problems

    Evaluate: lim_(n->oo)(((n+1)(n+2)...(n+n))^(1/n))/n

    If n and m (ltn) are two positive integers then n(n-1)(n-2)...(n-m) =

    If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(ntooo) (1)/(n^(2))([1.x]+[2.x]+[3.x]+...+[n.x]).

    If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(ntooo) (1)/(n^(3))([1^(2)x]+[2^(2)x]+[3^(2)x]+...+[n^(2)x]).

    Let f(n)=10^n+3 . 4^(n+2)+5, n in N . The greatest integer which divides f(n) for all n is