Home
Class 12
MATHS
If f(x)=(log)x(log x),t h e nf^(prime)(x...

If `f(x)=(log)_x(log x),t h e nf^(prime)(x)` at `x=e` is equal to (a) `1/e` (b) e (c) 1 (d) zero

Text Solution

Verified by Experts

`"Given "f(x)=log_(x)(log x)=(log_(e)(log_(e)x))/((log_(e)x))`
`"or "f'(x)=((1)/(log_(e)x)(1)/(x)log_(e)x-(1)/(x)log_(e)(log_(e)x))/((log_(e)x)^(3))`
`=((1)/(x)[1-log_(e)(log_(e)e)])/((log_(e)x)^(2))`
`"At "x=e," we get"`
`f'(e)=((1)/(e)[1-log_(e)(log_(e)e)])/((log_(e)e)^(2))=((1)/(e)[1-log_(e)1])/((1)^(2))`
`=(1)/(e)(1-0)=(1)/(e)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.2|40 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Archives|14 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(log)_x(lnx),t h e nf^(prime)(x) at x=e is equal to 1/e (b) e (c) 1 (d) zero

If f(x)=log_(x) (log x)," then find "f'(x) at x= e

Knowledge Check

  • If f(x)=log_(x)(log_(e)x) , then the value of f'(e ) is -

    A
    0
    B
    e
    C
    `(1)/(e )`
    D
    `(1)/(e^(2))`
  • If f(x)=log_5log_3 x , then f'(e ) is equal to

    A
    `elog_e5`
    B
    `elog_e3`
    C
    `(1)/(elog_e5)`
    D
    `(1)/(elog_e3)`
  • Similar Questions

    Explore conceptually related problems

    If f(x)=log_(5)log_(3)x , then f'(e ) is equal to

    If f(x) =|log_(e)|x||, then f'(x) equals

    If f^(prime)(x)=sqrt(2x^2-1) and y=f(x^2),t h e n(dy)/(dx) at x=1 is (a)2 (b) 1 (c) -2 (d) none of these

    If f: R^+rarrR^+ is a polynomial function satisfying the functional equation f(f(x))=6x-f(x),t h e nf(17) is equal to 17 (b) 51 (c) 34 (d) -34

    If f(x) = log_e ((1-x)/(1+x)) , then f' (0) is

    lim_(x->oo)(1/e-x/(1+x))^x is equal to (a) e/(1-e) (b) 0 (c) e/(e^(1-e)) (d) does not exist