Home
Class 12
MATHS
If |z-4/z|=2 , then the maximum value of...

If `|z-4/z|=2` , then the maximum value of `|Z|` is equal to (1) `sqrt(3)+""1` (2) `sqrt(5)+""1` (3) 2 (4) `2""+sqrt(2)`

A

`sqrt3 + 1 `

B

` sqrt5 + 1 `

C

`2`

D

`2 + sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
B

`|Z|= |(Z-(4)/(Z))+(4)/(Z)|le|Z-(4)/(Z)|+(4)/(|Z|) le 2 + (4)/(|Z|)`
`rArr |Z|^(2) - 2 |Z| - 4 le 0`
`rArr [|z| - sqrt(5) + 1)][(Z| - 1(-sqrt(5))]le 0`
`rArr 0 le |Z| le sqrt(5) + 1`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise NUMERICAL VALUE TYPES|33 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If |z^2-3|=3|z| , then the maximum value of |z| is a. 1 b. (3+sqrt(21))/2 c. (sqrt(21)-3)/2 d. none of these

If z=(sqrt3-i)/2 , then Find the. value of z^33

Knowledge Check

  • If z =(-2)/(1+sqrt3i), then the value of arg(z) is-

    A
    `pi/3`
    B
    `pi/6`
    C
    `-pi/3`
    D
    `(2pi)/(3)`
  • If z=-2-sqrt-5" "then" barz=

    A
    `-2+sqrt-5`
    B
    `2-sqrt-5`
    C
    `2+sqrt-5`
    D
    `-sqrt5+2i`
  • Similar Questions

    Explore conceptually related problems

    If Z=(sqrt3+i)/2 ,then the value of z^69 is

    If |z-(1/z)|=1, then a. (|z|)_(m a x)=(1+sqrt(5))/2 b. (|z|)_(m in)=(sqrt(5)-1)/2 c. (|z|)_(m a x)=(sqrt(5)-2)/2 d. (|z|)_(m in)=(sqrt(5)-1)/(sqrt(2))

    Simplify: (1)/(sqrt2 +1) + (1)/(sqrt3 + sqrt2) + (1)/(sqrt4 + sqrt3)

    Let (z-alpha)/(z+alpha) is purely imaginary and |z|=2, alphaepsilonR then alpha is equal to (A) 2 (B) 1 (C) sqrt2 (D) sqrt3

    The minimum value of (x^4+y^4+z^2)/(x y z) for positive real numbers x ,y ,z is (a) sqrt(2) (b) 2sqrt(2) (c) 4sqrt(2) (d) 8sqrt(2)

    If 'z, lies on the circle |z-2i|=2sqrt2 , then the value of arg((z-2)/(z+2)) is the equal to