Home
Class 12
MATHS
Let z(1) and z(2) be two distinct comple...

Let `z_(1)` and `z_(2)` be two distinct complex numbers and `z=(1-t)z_(1)+tz_(2)`, for some real number t with `0 lt t lt 1` and `i=sqrt(-1)`. If arg(w) denotes the principal argument of a non-zero compolex number w, then

A

`|z-z_(1)| + |z-z_(2)| = |z_(1) -z_(2)|`

B

`(z-z_(1))=(z-z_(2))`

C

`|{:(,z-z_(1),barz-barz_(1)),(,z_(2)-z_(1),barz_(2) -barz_(1)):}|=0`

D

`arg(z-z_(1)) = arg(z_(2) -z_(1))`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

Given `z -=(1-t) z_(1) + tz_(2)`
`rArr z = ((1-t)z_(1) +tz_(2))/((1-t)+t)`
`rArr z` divides the line segment joining `z_(1)` and `z_(2)` in ratio (1-t):t internally as `0 lt t lt 1`
`rArr z,z_(1) and z_(2)` are collinear.
`rArr arg(z-z_(1)) = arg(z_(2) -z)`

`rArr |{:(,z-z_(1),barz - barz_(1)),(,z_(2) - z_(1) , barz_(2) -barz_(1)):}|=0`
`AP + PB = AB `
`rArr |z-z_(1)| + |z-z_(2)|=|z_(1)-z_(2)|`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise ARCHIVES (SINGLE CORRECT ANSWER TYPE )|11 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If z_(1),z_(2) are two complex numbers , prove that , |z_(1)+z_(2)|le|z_(1)|+|z_(2)|

If a complex number z satisfies |2z+10+10 i|lt=5sqrt(3)-5, then the least principal argument of z is

Knowledge Check

  • Let z_1 and z_2 be two distinct complex numbers and let z= (1-t)z_1+tz_2 for some real number t with 0lttlt1 . If Arg(w) denotes the principal argument of a non-zero complex number w, then

    A
    `abs(z-z_1)+abs(z-z_2)=abs(z_1-z_2)`
    B
    `Arg(z-z_1)=arg(z-z_2)`
    C
    `[(z-z_1),(z_2-z_1)][(barz-barz_1),(barz_2-z_1)]`=0
    D
    `Arg(z-z_1)=arg(z_2-z_1)`
  • If z_(1)and z_(2) are conjugate complex number, then z_(1)+z_(2) will be

    A
    real
    B
    imaginary
    C
    positive integer
    D
    nagative integer.
  • If z_(1) and z_(2) are two complex numbers, then which of the following is true ?

    A
    `|z_(1)+z_(2)|=|z_(1)|- |z_(2)|`
    B
    `|Z_(1)-Z_(2)| =|Z_(1)| -|Z_(2)|`
    C
    `|z_(1)-z_(2)|le|z_(1)|- |z_(2)|`
    D
    `|z_(1)+z_(2)|le|z_(1)|+|z_(2)|`
  • Similar Questions

    Explore conceptually related problems

    Let z_1a n dz_2 be two distinct complex numbers and let z=(1-t)z_1+t z_2 for some real number t with 0 |z-z_1|+|z-z_2|=|z_1-z_2| (z-z_1)=(z-z_2) |z-z_1 z -( z )_1z_2-z_1( z )_2-( z )_1|=0 a r g(z-z_1)=a r g(z_2-z_1)

    If a rg(z_1)=170^0 and arg(z_2)=70^0 , then find the principal argument of z_1z_2dot

    If z_(1)and z_(2) be any two non-zero complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| then prove that, arg z_(1)=arg z_(2) .

    Let Z_(1) and Z_(2) be two complex numbers satisfying |Z_(1)|=9 and |Z_(2)-3-4i|=4 . Then the minimum value of |Z_(1)-Z_(2)| is

    If z_1 and z_2 are non zero complex numbers such that abs(z_1-z_2)=absz_1+absz_2 then