Home
Class 12
MATHS
Prove that (a b+x y)(a x+b y)>4a b x y(a...

Prove that `(a b+x y)(a x+b y)>4a b x y(a , b ,x ,y >0)dot`

Text Solution

Verified by Experts

Using A.M `ge` G.M we have
`(ab + xy)/(2) gt sqrt(abxy)`
`implies ax + xy gt 2 sqrt(abxy)`
similarly, ax + by `gt 2 sqrt(abxy)`
Multiplying (1) and (2) we get
`(ab + xy) (ax + by) gt 4abxy`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Example 1|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Example 2|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Comprehension|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

Prove that |[a x-b y-c z, a y+b x, c x+a z], [a y+b x, b y-c z-a x, b z+c y],[c x+a z, b z+c y, c z-a x-b y]|=(x^2+y^2+z^2)(a^2+b^2+c^2)(a x+b y+c z)dot

If x+y+z=0 prove that |[a x, b y, c z],[ c y, a z ,b x],[ b z ,c x ,a y]|=x y z|[a, b, c],[c ,a ,b],[b ,c ,a]|

A circle with center (a , b) passes through the origin. The equation of the tangent to the circle at the origin is (a) a x-b y=0 (b) a x+b y=0 (c) b x-a y=0 (d) b x+a y=0

Let a ,b ,c be real numbers with a^2+b^2+c^2=1. Show that the equation |a x-b y-c b x-a y c x+a b x+a y-a x+b y-cc y+b c x+a c y+b-a x-b y+c|=0 represents a straight line.

The straight lines x+2y-9=0,3x+5y-5=0 , and a x+b y-1=0 are concurrent, if the straight line 35 x-22 y+1=0 passes through the point (a) (a , b) (b) (b ,a) (c) (-a ,-b) (d) none of these

If x + y = 0 is the angle bisector of the angle containing the point (1,0), for the line 3x + 4y + b = 0; 4x+3y + b =0, 4x + 3y-b = 0 then find the range of b

If a : b = x : y , then show that (a^(2) + b^(2)) : a^(3)/(a + b) : : (x^(2) + y^(2)) : x^(3)/(x + y)

Prove that the greatest value of x y is c^3/sqrt(2a b) , if a^2x^4+b^2y^4=c^6dot

Prove that |{:((b+x)(c+x),,(c+x)(a+x),,(a+x)(b+x)),((b+y)(c+y) ,,(c+y)(a+y),,(a+y)(b+y)),((b+z)(c+z),, (c+z)(a+z),,(a+z)(b+x)):}| = (b-c) (c-a) (a-b) (y-z) (z-x) (x-y)

If the line a x+b y+c=0 is a normal to the curve x y=1, then (a) a >0,b >0 (b) a >0,b >0 (d) a 0