Home
Class 12
MATHS
Let x1, x2, ,xn be positive real number...

Let `x_1, x_2, ,x_n` be positive real numbers and we define `S=x_1+x_2++x_ndot` Prove that `(1+x_1)(1+x_2)(1+x_n)lt=1+S+(S^2)/(2!)+(S^3)/(3!)++(S^n)/(n !)`

Text Solution

Verified by Experts

We have to prove that
`(1 + x_(2)) (1 + x_(2))…..(1 + x_(n)) le 1 + S + (S^(2))/(2!) + (S^(3))/(3!) + ……+ (S^(n))/(n!)`
Product on left hand side suggests that we must consider G.M of
`(1 + x_(1)), (1 + x_(2)),….., (1 + x_(n))`. Also, `(1 + x_(1))(1 + x_(2)),....., (1 + x_(n))` are postive. Now,
`A.M le G.M`
`implies ((1 + x_(1)) + (1 + x_(2)) + .....+ (1 + x_(n)))/(n) ge [(1 + x_(1))(1 + x_(2))......(1 + x_(n))]^((1)/(n)`
or `[(1 + x_(1))(1 + x_(2))......(1 + x_(n))]^(1//2) le (n + (x_(1) + x_(2) + ........ + x_(n)))/(n)`
or `(1 + x_(1)) (1 + x_(2)).....(1 + x_(n)) le ((n + S)/(n))^(n)`
Now `(1 + (S)/(n))^(n) = 1 + S + ((1 - (1)/(n)))/(2!) S^(2) + (1 - (1)/(n))(1 - (2)/(n))/(3!) S^(3) + .....`
Now, `(1 - (1)/(n))/(2!) lt 1, ((1 - (1)/(n))(1 - (2)/(n)))/(3!) lt 1` and so on.
Hence, `(1 + x_(1)) (1 + x_(2)) ....... (1 + x_(n)) le 1 + S + (S^(2))/(2!) + (S^(3))/(3!) + .....`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Example 2|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Example 3|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Illustration|29 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

If x and y are positive real numbers and m, n are any positive integers, then prove that (x^n y^m)/((1+x^(2n))(1+y^(2m))) lt 1/4

Let x, y be positive real numbers and m, n be positive integers, The maximum value of the expression (x^(m)y^(n))/((1+x^(2m))(1+y^(2n))) is

If S_1, S_2 and S_3 be respectively the sum of n, 2n and 3n terms of a G.P .Prove that S_1(S_3-S_2)=(S_2-S_1)^2 .

If S_(1), S_(2), S_(3) be respectively the sums of n, 2n and 3n terms of a G.P., prove that, S_(1)(S_(3) - S_(2)) = (S_(2) - S_(1))^(2) .

If S_1,S_2 and S_3 be respectively the sum of n, 2n and 3n terms of a G.P., prove that S_1(S_3-S_2)=((S_2)-(S_1))^2

Prove by induction that (1+x_1)(1+x_2)(1+x_3)…….(1+x_n) ge 1+x_1+x_2+……+x_n

Solve : ((2x+1)!)/((x+2)!)xx((x-1)!)/((2x-1)!)=(3)/(5),( x in N N)

Prove that 1-^n C_1(1+x)/(1+n x)+^n C_2(1+2x)/((1+n x)^2)-^n C_3(1+3x)/((1+n x)^3)+....(n+1) terms =0

Prove that cos^(-1)((1-x^(2n))/(1+x^(2n)))=2tan^(-1)x^n ,0 lt x llt oo

If x_1 , x_2 ,……. x_n are real quantities. Prove that 1/n overset(n)underset(i=1)sum x i^2 ge (1/n overset(n)underset(i=1)sum|x i|)^2