Home
Class 12
MATHS
If x+y+z=1a n dx ,y ,z are positive, the...

If `x+y+z=1a n dx ,y ,z` are positive, then show that `(x+1/x)^2+(y+1/y)^2+(z+1/z)^2>(100)/3`

Text Solution

Verified by Experts

A.M of 2nd power `gt` 2nd power of A.M
`implies ((x + (1)/(2))^(2) + (y + (1)/(y))^(2) + (z + (1)/(z))^(2))/(3)`
`gt [((x + (1)/(2)) + (y + (1)/(y)) + (z + (1)/(z)))/(3)]^(2)`
or `((x + (1)/(2))^(2) + (y + (1)/(y))^(2) + (z + (1)/(z))^(2))/(3)`
`gt (1)/(9) (x + y + z + (1)/(x) + (1)/(y) + (1)/(z))^(2)`
or `((x + (1)/(2))^(2) + (y + (1)/(y))^(2) + (z + (1)/(z))^(2))/(3) gt (1)/(9) (1 + (1)/(x) + (1)/(y) + (1)/(z))^(2)`
Again `(x^(-1) + y^(-1) + z^(-1))/(3) gt ((x + + z)/(3))^(-1)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Example 8|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Concept Application Eexercises 6.1|8 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Example 6|1 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

If x ,y ,z are positive real number, then show that sqrt((x^(-1)y) x sqrt((y^(-1)z) x sqrt((z^(-1)x) =1

If x, y, z are in continued proportion, then (1)/(y^2 -x^2) + (1)/(y^2 - z^2) =

If x,y,b and real, z=x+iy and (z-i)/(z-1)=ib, show that, (x-(1)/(2))^(2)+(y-(1)/(2))^(2)=(1)/(2).

If cos^-1 x +cos^-1y + cos^-1z = pi and x + y + z = 3/2 , then show that x = y = z.

If z = x + iy and |2z+1|=|z-2i| ,then show that 3(x^(2)+y^(2))+4(x+y)=3

If (b+c-a)x = (c+a-b)y = (a+b-c) z =2,then show that (i/x+1/y) (1/y+1/z) (1/z+1/x) =abc.

If x > 0, y >0, z > 0 and x +y + z = 1 , prove that (1+x)(1+y)(1+z)ge 8(1-x) (1-y) (1-z)

If x+z = 2y " and " b^2 = ac , then prove that a^(y-z)*b^(z-x)*c^(x-y) =1 .

If x+y+z=x y z prove that (2x)/(1-x^2)+(2y)/(1-y^2)+(2z)/(1-z^2)=(2x)/(1-x^2)(2y)/(1-y^2)(2z)/(1-z^2)dot

If x^(2) : (by + cz) =y^(2) : (cz + ax) = z^(2) : (ax + by) = 1 , then show that a/(a+x) + b/(b+y) + c/(c+z) = 1 .