Home
Class 12
MATHS
Prove that (1)/(a) + (1)/(b) + (1)/(c ) ...

Prove that `(1)/(a) + (1)/(b) + (1)/(c ) ge (1)/(sqrt((bc))) + (1)/(sqrt((ca))) + (1)/(sqrt((ab)))`, where a,b,c `gt` 0

Text Solution

Verified by Experts

`(1)/(b)+(1)/(c) ge 2[(1)/(b)(1)/(c)]^(1///2)`
`(1)/(a)+(1)/(b) ge 2[(1)/(a)(1)/(b)]^(1//2)`
`(1)/(a)+(1)/(c) ge 2 [(1)/(a)(1)/(c)]^(1//2)`
Adding, we get
`(1)/(a)+(1)/(b)+(1)/(c)ge (1)/(sqrt(bc))+(1)/(sqrt(bc))+(1)/(sqrt(ab))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Concept Application Eexercises 6.2|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Concept Application Eexercises 6.3|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Example 8|1 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

Three positive numbers a, b, c are in A.P. Prove that (1)/(sqrt(b)+sqrt(c )), (1)/(sqrt(c )+sqrt(a)) , (1)/(sqrt(a) + sqrt(b)) are also in A.P.

Prove that "tan"^(-1)sqrt((a(a+b+c))/(bc))+"tan"^(-1)sqrt((b(a+b+c))/(ca))+"tan"^(-1)sqrt((c(a+b+c))/(ab))=pi(a,b,c gt 0)

3 circles of radii a,b,c (a

Let a, b and c be positive real numbers. Then prove that tan^(-1) sqrt((a(a + b + c))/(bc)) + tan^(-1) sqrt((b (a + b + c))/(ca)) + tan^(-1) sqrt((c(a + b+ c))/(ab)) =pi

Prove that sin^(-1). ((x + sqrt(1 - x^(2)))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

If ab +bc+ca=0 , show that the lines (x)/(a)+(y)/(b)=(1)/(c),(x)/(b)+(y)/(c)=(1)/(a) and (x)/(c)+(y)/(a)=(1)/(b) are concurrent.

The incenter of the triangle with vertices (1,sqrt(3)),(0,0), and (2,0) is (a) (1,(sqrt(3))/2) (b) (2/3,1/(sqrt(3))) (c) (2/3,(sqrt(3))/2) (d) (1,1/(sqrt(3)))

Show that (1)/(log_(a)bc+1)+(1)/(log_(b)ca+1)+(1)/(log_(c )ab+1)=1

Show that (x^(b-c))^((1)/(bc))xx(x^(c-a))^((1)/(ca))xx(x^(a-b))^((1)/(ab))=1 .