Home
Class 12
MATHS
Prove that [(a^2+b^2)/(a+b)]^(a+b)> a^a ...

Prove that `[(a^2+b^2)/(a+b)]^(a+b)> a^a b^b >{(a+b)/2}^(a+b)dot`

Text Solution

Verified by Experts

`([a+a+...a "times"]+[b+b+....b" times"])/(a+b)ge [a^ab^b]^((1)/(a+b))`
`ge (a+b)/(((1)/(a)+(1)/(a)+....a " times")+((1)/(b)+(1)/(b)+.....b" times"))`
or ` (a^2+b^2)/(a+b)ge[a^ab^b]^((1)/(a+b))ge (a+b)/(1+1)`
or ` ((a^2+b^2)/(a+b))^(a+b) ge a^a b^b ge ((a+b)/(2))^(a+b)`
or ` [(a^2+b^2)/(a+b)]^(a+b) gt a^a b^b gt {(a+b)/(2)}^(a+b)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Concept Application Eexercises 6.4|4 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise EXERCISES (Single Correct answer type)|20 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Concept Application Eexercises 6.2|6 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

Prove that |axxb|^2=a^2b^2-(a*b)^2 .

Prove that ((a+b)/2)^(a+b) le a^a.b^b.[a,binN] .

Prove that (a b+x y)(a x+b y)>4a b x y(a , b ,x ,y >0)dot

If x= (a/b)^((2ab)/(a^2-b^2)) , then prove that (ab)/(a^2+b^2)(x^(a/b)+x^(b/a))=(a/b)^((a^2+b^2)/(a^2-b^2)) .

Prove that (b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)+(a^2+b^2)/(a+b)> a+b+c

Prove that matrix [((b^(2)-a^(2))/(a^(2)+b^(2)),(-2ab)/(a^(2)+b^(2))),((-2ab)/(a^(2)+b^(2)),(a^(2)-b^(2))/(a^(2)+b^(2)))] is orthogonal.

If f(x)=((a+x)/(b+x))^(a+b+2x) , prove that, f'(0) =[2"log"(a)/(b) +(b^(2)-a^(2))/(ab)]((a)/(b))^(a+b) .

If f(x)= ((a+x)/(b+x))^(a+b+2x) then prove that f'(0)= [2log(a/b)+(b^2-a^2)/(ab)](a/b)^(a+b)

prove that , |{:(2ab,a^2,b^2),(a^2,b^2,2ab),(b^2,2ab,a^2):}|=-(a^3+b^3)^2

Prove that ((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3))/((a-b)^(3)+(b-c)^(3)+(c-a)^(3))=(a+b)(b+c)(c+a)