Home
Class 8
MATHS
(1+ tan ^(2) A)/( 1 + cot^(2) A) equals...

`(1+ tan ^(2) A)/( 1 + cot^(2) A)` equals

A

`sec^(2) A `

B

` - 1 `

C

` cot^(2) A `

D

` tan^(2) A `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((1 + \tan^2 A)/(1 + \cot^2 A)\), we can follow these steps: ### Step 1: Use Trigonometric Identities We know from trigonometric identities that: \[ 1 + \tan^2 A = \sec^2 A \] and \[ 1 + \cot^2 A = \csc^2 A \] ### Step 2: Substitute the Identities Substituting these identities into the expression, we have: \[ \frac{1 + \tan^2 A}{1 + \cot^2 A} = \frac{\sec^2 A}{\csc^2 A} \] ### Step 3: Rewrite \(\sec^2 A\) and \(\csc^2 A\) Recall that: \[ \sec^2 A = \frac{1}{\cos^2 A} \quad \text{and} \quad \csc^2 A = \frac{1}{\sin^2 A} \] Thus, we can rewrite the expression as: \[ \frac{\frac{1}{\cos^2 A}}{\frac{1}{\sin^2 A}} = \frac{1}{\cos^2 A} \cdot \frac{\sin^2 A}{1} = \frac{\sin^2 A}{\cos^2 A} \] ### Step 4: Simplify the Expression The expression \(\frac{\sin^2 A}{\cos^2 A}\) can be simplified to: \[ \tan^2 A \] ### Final Answer Thus, we conclude that: \[ \frac{1 + \tan^2 A}{1 + \cot^2 A} = \tan^2 A \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 39|1 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 40|1 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 37|1 Videos
  • TRIANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet|10 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 32 |10 Videos

Similar Questions

Explore conceptually related problems

(1+tan^(2)A)/(1+cot^(2)A) is equal to sec^(2)A(b)-1(c)cot^(2)A(d)tan^(2)A

(1+ tan^2 A)/(1+cot^2 A) = tan^2 A

(tan ^ (3) A) / (1 + tan ^ (2) A) + (cot ^ (3) A) / (1 + cot ^ (2) A) = sec A cos ecA-2sin A cos A

(1-tan^2 45^@)/(1+cot^2 A ) is equal to ……

If cot A +(1)/( cot A) =2 , then cot^2 A + (1)/( cot^2 A) is equal to

What is (1+ tan^(2) theta)/(1+cot^(2) theta) -((1-tan theta)/(1-cot theta ))^(2) equal to ?

sin^(2)A*tan^(2)A+cos^(2)A*cot^(2) A= A) 1 + tan^(2)A + cot^(2) A B) tan^(2)A +cot^(2) A-1 C) 1 + sec^(2)A + tan^(2) A D) 1 + csc^(2)A + cot^(2) A

Prove that (1+tan^(2)A)/(1+cot^(2)A)=((1-tan A)/(1-cot A))^(2)=tan^(2)A

Show that : ((1+tan^(2)A)/(1+cot^(2)A))=((1-tan A)/(1-cot A))^(2)=tan^(2)A

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to

S CHAND IIT JEE FOUNDATION-TRIGONOMETRICAL RATIOS -Self Assessment Sheet - 38
  1. (1+ tan ^(2) A)/( 1 + cot^(2) A) equals

    Text Solution

    |