Home
Class 8
MATHS
(cos alpha + cos beta)/( sin alpha - sin...

`(cos alpha + cos beta)/( sin alpha - sin beta) + (sin alpha + sin beta)/( cos alpha - cos beta )` =

A

1

B

2

C

`sqrt(2)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{\cos \alpha + \cos \beta}{\sin \alpha - \sin \beta} + \frac{\sin \alpha + \sin \beta}{\cos \alpha - \cos \beta}, \] we will follow these steps: ### Step 1: Find a common denominator The common denominator for the two fractions is \((\sin \alpha - \sin \beta)(\cos \alpha - \cos \beta)\). We will rewrite the expression using this common denominator. \[ \frac{(\cos \alpha + \cos \beta)(\cos \alpha - \cos \beta) + (\sin \alpha + \sin \beta)(\sin \alpha - \sin \beta)}{(\sin \alpha - \sin \beta)(\cos \alpha - \cos \beta)} \] ### Step 2: Expand the numerators Now, we will expand the numerators of both terms. 1. For the first term: \[ (\cos \alpha + \cos \beta)(\cos \alpha - \cos \beta) = \cos^2 \alpha - \cos^2 \beta \] 2. For the second term: \[ (\sin \alpha + \sin \beta)(\sin \alpha - \sin \beta) = \sin^2 \alpha - \sin^2 \beta \] Combining these, we have: \[ \cos^2 \alpha - \cos^2 \beta + \sin^2 \alpha - \sin^2 \beta \] ### Step 3: Use the Pythagorean identity Using the identity \(\sin^2 \theta + \cos^2 \theta = 1\), we can rewrite the expression: \[ (\cos^2 \alpha + \sin^2 \alpha) - (\cos^2 \beta + \sin^2 \beta) = 1 - 1 = 0 \] ### Step 4: Final expression Thus, the numerator simplifies to 0. Therefore, the entire expression simplifies to: \[ \frac{0}{(\sin \alpha - \sin \beta)(\cos \alpha - \cos \beta)} = 0 \] ### Conclusion The final answer is: \[ 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 38|1 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 39|1 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 36|1 Videos
  • TRIANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet|10 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 32 |10 Videos

Similar Questions

Explore conceptually related problems

The value of ((cos alpha + cos beta)/(sin alpha - sin beta))^(n) + ((sin alpha + sin beta)/(cos alpha - cos beta))^(n) (where n is a even number ) is equal to-

The value of ((cos alpha+cos beta)/(sin alpha-sin beta))^(n)+((sin alpha+sin beta)/(cos alpha-cos beta))^(n) (where n is a whole number) is equal to

(cos alpha + cos beta) ^ (2) + (sin alpha + sin beta) ^ (2) =

Evaluate: quad =|cos alpha cos beta cos alpha sin beta-sin alpha-sin beta cos beta0sin alpha cos beta sin alpha sin beta cos alpha|

If sin alpha+sin beta=a and cos alpha-cos beta=b then

The value of sin^2 alpha cos^2 beta + cos^2 alpha sin^2 beta + sin^2 alpha sin^2 beta +cos^2 alpha cos^2 beta is

det[[cos alpha cos beta,cos alpha sin beta,-sin alpha-sin beta,cos beta,0sin alpha cos beta,sin alpha sin beta,cos alpha]]

Find the value of, cos alpha cos beta, cos alpha sin beta, -no alpha-sin beta, cos beta, 0 sin alpha cos beta, sin alpha sin beta, cos alpha] |

S CHAND IIT JEE FOUNDATION-TRIGONOMETRICAL RATIOS -Self Assessment Sheet - 37
  1. (cos alpha + cos beta)/( sin alpha - sin beta) + (sin alpha + sin beta...

    Text Solution

    |