Home
Class 12
MATHS
Vertices of a variable triangle are (3, ...

Vertices of a variable triangle are `(3, 4), (5 cos theta, 5 sin theta)` and `(5 sin theta, -5 cos theta)`, where `theta in R`. Locus of its orthocentre is

A

`x^(2)+y^(2)+6x+8y-25=0`

B

`x^(2)+y^(2)-6x+8y-25=0`

C

`x^(2)+y^(2)+6x-8y-25=0`

D

`x^(2)+y^(2)-6x-8y-25=0`

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|7 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|5 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise For Session 4|17 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|37 Videos

Similar Questions

Explore conceptually related problems

The diameter of the nine point circle of the triangle with vertices (3, 4), (5 cos theta, 5 sin theta) and (5 sin theta, -5 cos theta) , where theta in R , is

Find sin 2 theta when sin theta + cos theta= 1 .

If the coordinates of a variable point be (cos theta + sin theta, sin theta - cos theta) , where theta is the parameter, then the locus of P is

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

Prove that : sin 2 theta= 2sin theta cos theta .

If f (theta) = |sin theta| + |cos theta|, theta in R , then

Evaluate the determinant |{:(cos theta, - sin theta),(sin theta , cos theta):}| .

Evaluate the determinant |{:(cos theta, - sin theta),(sin theta , cos theta):}| .

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

Find dy/dx when x = a (cos theta + theta sin theta) , y = a (sin theta - theta cos theta).