Home
Class 12
MATHS
Statement I If tan^(-1) x + tan^(-1) y ...

Statement I If ` tan^(-1) x + tan^(-1) y = pi/4 - tan^(-1) z " and " x + y + z = 1 ` , then arithmetic mean of odd powers of x, y, z is equal to 1/3 .
Statement II For any x, y, z we have
` xyz - xy - yz - zx + x + y + z = 1 + ( x - 1) ( y - 1) ( z - 1) `

Text Solution

Verified by Experts

The correct Answer is:
b
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If tan^-1 x + tan^-1y - tan^-1z = 0 , then prove that x + y + xyz = z.

If tan^-1 x + tan^-1 y = (4pi)/5 , then cot^-1 x + cot^-1 y equals

If tan^-1x + tan^-1y + tan^-1z = pi , then prove that: x + y + z = xyz.

tan^-1 x - tan^-1 y= tan^-1 (frac{x-y}{1+xy} .

tan^-1 x + tan^-1y= tan^-1 (frac{x+y}{1-xy} ).

If tan^-1 x + tan^-1y = pi/4, xy < 1, then write the value of x +y + xy.

If x,y,z are in AP and tan^(-1)x,tan^(-1)y,tan^(-1)z are also in AP, then

If x, y, z are in A.P. and tan^(-1) x, tan^(-1) y and tan^(-1)z are also in A.P. then show that x=y=z and y≠0

Prove that : tan (x-y)+tan (y -z) + tan (z-x)= tan (x-y)tan (y -z) tan (z-x) .

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of x + y + z is equal to