Home
Class 12
MATHS
The integral int(sec^2x)/((secx+tanx)^(9...

The integral `int(sec^2x)/((secx+tanx)^(9/2))dx` equals (for some arbitrary constant `K)dot`

A

`(-1)/((sec x + tan x)^(11//2)){(1)/(11)-1/7 (sec x + tan x)^(2)}+K`

B

`(1)/((sec x + tan x)^(11//2)){(1)/(11)-1/7 (sec x + tan x)^(2)}+K`

C

`(-1)/((sec x + tan x)^(11//2)){(1)/(11)+1/7 (sec x + tan x)^(2)}+K`

D

`(1)/((sec x + tan x)^(11//2)){(1)/(11)+1/7 (sec x + tan x)^(2)}+K`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate int dx/(secx + tanx)

Evaluate int dx/(secx-tanx)

Evaluate: int (sec^2 (x))/(tanx)dx

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to (where C is a constant of integration)

Compute the following integrals: int(secx)/(log(secx+tanx))dx

The value of int(sec x (2 + sec x))/((1+2 sec x)^(2))dx , is equal to

Evaluate the following integrals: int(sec^2x)/((tanx+1)(tanx+2))dx