Home
Class 12
MATHS
The value o lim(xtooo)(1/(n^(3)))([1^(2)...

The value o `lim_(xtooo)(1/(n^(3)))([1^(2)x+1^(2)]+[2^(2)x+2^(2)]+…..+[n^(2)x+n^(2)])` is where [.] denotes the greatest integer function.

A

`x/3`

B

`x+1/3`

C

`x/3+1/3`

D

None of these

Text Solution

Verified by Experts

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 5|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos

Similar Questions

Explore conceptually related problems

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Evaluate lim_(xtooo)(1+2/x)^(x)

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

f(x)=sin^(-1)((2-3[x])/4) , which [*] denotes the greatest integer function.

The value of lim_(xto0){lim_(ntooo)([1^(2)(sinx)^(x)]+[2^(2)(sinx)^(x)]+……….+[n^(2)(sinx)^(x)])/(n^(3))} is (wehre [.] denotes the greatest integer function)

Solve lim_(xtooo) [tan^(-1)x] (where [.] denotes greatest integer function)

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

The equation x^2 - 2 = [sin x], where [.] denotes the greatest integer function, has