Home
Class 12
MATHS
""^(4n)C(2n): "^(2n) Cn=[1,3,5,…….(4n-1)...

`""^(4n)C_(2n): "^(2n) C_n=[1,3,5,…….(4n-1)]:[1,3,5………(2n-1)]^2`

Text Solution

Verified by Experts

The correct Answer is:
T
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    ML KHANNA|Exercise SET -1 FILL IN THE BLANKS |1 Videos
  • PERMUTATIONS AND COMBINATIONS

    ML KHANNA|Exercise SET-2 MCQ|26 Videos
  • PERMUTATIONS AND COMBINATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST|20 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos

Similar Questions

Explore conceptually related problems

If (.^(2n)C_1)^2+ 2.(.^(2n)C_2)^2+3.(.^(2n)C_3)^2+...+2n. (.^(2n)C_(2n))^2 = 18 .^(4n-1)C_(2n-1)

Prove that: :2^(n)C_(n)=(2^(n)[1.3.5(2n-1)])/(n!)

Prove that .^(2n)C_(n)=(2^(n)xx[1*3*5...(2n-1)])/(n !) .

Prove that ((2n+1)!)/(n!)=2^(n)[1.3.5.....(2n-1)*(2n+1)]

Prove that: ^(2n)C_0-3.^(2n)C_1+3^2.^(2n)C_2-..+(-1)^(2n) ..3^(2n)^(2n)C_(2n)=4^n for all value of N

If n is a positvie integers, the value of E=(2n+1).^(n)C_(0)+(2n-1).^(n)C_(1)+(2n-3)^(n)C_(2)+………+1. ^(n)C_(n)2 is

2C_(0)+5C_(1)+8C_(2)++(3n+2)C_(n)=(3n+4)2^(n-1)

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .