Home
Class 12
MATHS
If (x^4)/((x-1)(x-2))=(16)/(x-2)-(1)/(x-...

If `(x^4)/((x-1)(x-2))=(16)/(x-2)-(1)/(x-1)+x^(2)+3 x+k` ,then `k=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{x^4}{(x-1)(x-2)} = \frac{16}{x-2} - \frac{1}{x-1} + x^2 + 3x + k, \] we need to find the value of \( k \). ### Step 1: Find a common denominator for the right-hand side The common denominator for the terms on the right-hand side is \( (x-1)(x-2) \). So, we can rewrite the right-hand side as: \[ \frac{16(x-1)}{(x-2)(x-1)} - \frac{1(x-2)}{(x-1)(x-2)} + (x^2 + 3x + k)(x-1)(x-2). \]
Promotional Banner

Topper's Solved these Questions

  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (TRUE AND FALSE)|5 Videos
  • PAIR OF STRAIGHT LINES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST|20 Videos

Similar Questions

Explore conceptually related problems

If (x-4)/(x^(2)-5x-2k)=(2)/(x-2)-(1)/(x+k), then

If the third derivative of (x^(4))/((x-1)(x-2)) is (-12k)/((x-2)^(4))+(6)/((x-1)^(4)) , then the value of k is

(x^(3))/((2x-1)(x-3)(x-2))=K+(A)/(2x-1)+(B)/(x-3)+(C)/(x-2) then K=

" If (3x^(3)-8x^(2)+10)/((x-1)^(4))=(3)/(x-1)+(1)/((x-1)^(2))-(7)/((x-1)^(3))+(k)/((x-1)^(2)) then "k=

((2x-1)/((x-1)(2x+3))=(1)/(5(x-1))+(k)/(5(2x+3))rArr k=

If (x^(2)+10)/((x^(2)+1)^(2))=(k)/(x^(2)+1)+(9)/((x^(2)+1)^(2)), then the value of "k" is

16. "4^(x)-3^(x-(1)/(2))=3^(x+(1)/(2))-2^(2x-1).

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.