Home
Class 12
MATHS
The value of the determinant |(1,cos(B...

The value of the determinant
`|(1,cos(B-A),cos(C-A)),(cos(A-B),1,cos(C-B)),(cos(A-C),cos(B-C),1)|` is

A

`4cos A cos B cos C`

B

`2cos A cos B cos C`

C

`4sin A sin B sinC`

D

zero

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} 1 & \cos(B-A) & \cos(C-A) \\ \cos(A-B) & 1 & \cos(C-B) \\ \cos(A-C) & \cos(B-C) & 1 \end{vmatrix} \] we will use properties of determinants and trigonometric identities. ### Step 1: Rewrite the Cosine Terms Using the cosine subtraction formula, we can express the cosine terms in the determinant: \[ \cos(B-A) = \cos B \cos A + \sin B \sin A \] \[ \cos(A-B) = \cos A \cos B + \sin A \sin B \] \[ \cos(C-A) = \cos C \cos A + \sin C \sin A \] \[ \cos(A-C) = \cos A \cos C + \sin A \sin C \] \[ \cos(C-B) = \cos C \cos B + \sin C \sin B \] \[ \cos(B-C) = \cos B \cos C + \sin B \sin C \] ### Step 2: Substitute into the Determinant Substituting these identities into the determinant gives: \[ D = \begin{vmatrix} 1 & \cos B \cos A + \sin B \sin A & \cos C \cos A + \sin C \sin A \\ \cos A \cos B + \sin A \sin B & 1 & \cos C \cos B + \sin C \sin B \\ \cos A \cos C + \sin A \sin C & \cos B \cos C + \sin B \sin C & 1 \end{vmatrix} \] ### Step 3: Simplify the Determinant Notice that the determinant has a symmetric structure. We can also observe that if we replace one row with the sum of the rows, the value of the determinant remains unchanged. ### Step 4: Apply the Determinant Properties Using the property of determinants where if two rows (or columns) are identical, the determinant is zero, we can see that if we add the first row to the second and third rows, we will create identical rows, leading to: \[ D = 0 \] ### Conclusion Thus, the value of the determinant is: \[ \boxed{0} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE)|1 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS) |5 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

cos(-A+B+C)+cos(A-B+C)+cos(A+B-C)+cos(A+B+C)=4cos A cos B cos C

In any triangle, (1+ cos (A-B)cos C)/(1+cos (A-C)cos B)=

Knowledge Check

  • In a Delta ABC , a, b, c are sides and A, B, C are angles opposite to them, then the value of the determinant |(a^(2),b sin A,c sin A),(b sin A,1,cos A),(c sin A,cos A,1)| , is

    A
    0
    B
    1
    C
    2
    D
    3
  • For all values of A,B,C and P,Q,R the determinant given below |(cos(A-P),cos(A-Q),cos(A-R)),(cos(B-P),cos(B-Q),cos(B-R)),(cos(C-P),cos(C-Q),cos(C-R))| is

    A
    `cos A cos B cos C`
    B
    `sin P sinQ sinR`
    C
    0
    D
    `sum sin(A+P)`
  • If A, B and C denote the angles of a triangle, then Delta = |(-1,cos C,cos B),(cos C,-1,cos A),(cos B,cos A,-2)| is independent of

    A
    A
    B
    B
    C
    C
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    (c-b cos A)/(b-c cos A)=(cos B)/(cos C)

    (cos A-cos B+cos C+1)/(cos A+cos B+cos C-1) =

    Prove that: cos(A+B+C)+cos(A-B+C)+cos(A+B-C)+cos(-A+B+C)=4cos A cos B cos C

    (b+c)/(a)=(cos B+cos C)/(1-cos A)

    If A,B,C are the angles of triangle ABC, then the minimum value of |{:(-2,cos C , cos B),(cos C , -1, cos A ) , (cos B , cos A , -1):}| is equal to :