Home
Class 12
MATHS
If fr(x),g(r)(x),hr(x),r=1,2,3 are poly...

If `f_r(x),g_(r)(x),h_r(x),r=1,2,3` are polynomials in x such that `f_r(a) = g_r(a) = h_r (a) , r = 1,2,3` and `F(x) = |(f_1(x),f_2(x),f_3(x)),(g_1(x),g_2(x),g_3(x)),(h_1(x),h_2(x),h_3(x))|` then F' at x = a is ………

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the determinant \( F(x) \) at the point \( x = a \). The determinant is defined as: \[ F(x) = \begin{vmatrix} f_1(x) & f_2(x) & f_3(x) \\ g_1(x) & g_2(x) & g_3(x) \\ h_1(x) & h_2(x) & h_3(x) \end{vmatrix} \] Given that \( f_r(a) = g_r(a) = h_r(a) \) for \( r = 1, 2, 3 \), we can denote this common value as \( K_r \). Therefore, we have: - \( f_1(a) = g_1(a) = h_1(a) = K_1 \) - \( f_2(a) = g_2(a) = h_2(a) = K_2 \) - \( f_3(a) = g_3(a) = h_3(a) = K_3 \) ### Step 1: Differentiate the Determinant Using the property of determinants, the derivative of \( F(x) \) can be computed using the formula for the derivative of a determinant: \[ F'(x) = \sum_{i=1}^{n} \det(A_i) \] where \( A_i \) is the matrix formed by differentiating the \( i^{th} \) row of the determinant and keeping the others unchanged. ### Step 2: Construct the Derivatives We will differentiate each row of the determinant: 1. **Differentiate the first row:** \[ F'(x) = \begin{vmatrix} f_1'(x) & f_2'(x) & f_3'(x) \\ g_1(x) & g_2(x) & g_3(x) \\ h_1(x) & h_2(x) & h_3(x) \end{vmatrix} \] 2. **Differentiate the second row:** \[ + \begin{vmatrix} f_1(x) & f_2(x) & f_3(x) \\ g_1'(x) & g_2'(x) & g_3'(x) \\ h_1(x) & h_2(x) & h_3(x) \end{vmatrix} \] 3. **Differentiate the third row:** \[ + \begin{vmatrix} f_1(x) & f_2(x) & f_3(x) \\ g_1(x) & g_2(x) & g_3(x) \\ h_1'(x) & h_2'(x) & h_3'(x) \end{vmatrix} \] ### Step 3: Evaluate at \( x = a \) Now we substitute \( x = a \): \[ F'(a) = \begin{vmatrix} f_1'(a) & f_2'(a) & f_3'(a) \\ g_1(a) & g_2(a) & g_3(a) \\ h_1(a) & h_2(a) & h_3(a) \end{vmatrix} + \begin{vmatrix} f_1(a) & f_2(a) & f_3(a) \\ g_1'(a) & g_2'(a) & g_3'(a) \\ h_1(a) & h_2(a) & h_3(a) \end{vmatrix} + \begin{vmatrix} f_1(a) & f_2(a) & f_3(a) \\ g_1(a) & g_2(a) & g_3(a) \\ h_1'(a) & h_2'(a) & h_3'(a) \end{vmatrix} \] Since \( f_r(a) = g_r(a) = h_r(a) \) for \( r = 1, 2, 3 \), we have: \[ F'(a) = \begin{vmatrix} f_1'(a) & f_2'(a) & f_3'(a) \\ K_1 & K_2 & K_3 \\ K_1 & K_2 & K_3 \end{vmatrix} + \begin{vmatrix} K_1 & K_2 & K_3 \\ g_1'(a) & g_2'(a) & g_3'(a) \\ K_1 & K_2 & K_3 \end{vmatrix} + \begin{vmatrix} K_1 & K_2 & K_3 \\ K_1 & K_2 & K_3 \\ h_1'(a) & h_2'(a) & h_3'(a) \end{vmatrix} \] ### Step 4: Simplify the Determinants In each of these determinants, two rows are identical (the second and third rows in each case), which means that each determinant evaluates to zero. Therefore: \[ F'(a) = 0 + 0 + 0 = 0 \] ### Final Answer Thus, the derivative \( F'(a) \) is: \[ \boxed{0} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (4) (MULTIPLE CHOICE QUESTIONS) |20 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE)|3 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE)|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If f_r(x),g_r(x),h_r(x),r=1,2,3 are polynomials such that f_r(a)=g_r(a)=h_r(a),r=1,2,3a n d F(x)=|[f_1(x),f_2(x),f_3(x)],[g_1(x),g_2(x),g_3(x)],[h_1(x),h_2(x),h_3(x)]| then F^(prime)(x)a tx=a is____________________

If f_(r)(x), g_(r)(x), h_(r) (x), r=1, 2, 3 are polynomials in x such that f_(r)(a) = g_(r)(a) = h_(r) (a), r=1, 2, 3 and " "F(x) =|{:(f_(1)(x)" "f_(2)(x)" "f_(3)(x)),(g_(1)(x)" "g_(2)(x)" "g_(3)(x)),(h_(1)(x)" "h_(2)(x)" "h_(3)(x)):}| then F'(x) at x = a is ..... .

Knowledge Check

  • If f_(n)(x),g_(n)(x),h_(n)(x),n=1, 2, 3 are polynomials in x such that f_(n)(a)=g_(n)(a)=h_(n)(a),n=1,2,3 and F(x)=|{:(f_(1)(x),f_(2)(x),f_(3)(x)),(g_(1)(x),g_(2)(x),g_(3)(x)),(h_(1)(x),h_(2)(x),h_(3)(x)):}| . Then, F' (a) is equal to

    A
    0
    B
    `f_(1)(a)g_(2)(a)h_(3)(a)`
    C
    1
    D
    none of these
  • If f : R to R is a function such that f(x) = x^3 + x^2 f'(1) + x f" (2) + f ' ' '(3) for all x in R, then f (2) -f (1) is

    A
    `f(0)`
    B
    `-f(0)`
    C
    `f'(0)`
    D
    `-f'(0)`
  • Let f : R to R and g : R to R be given by f (x) = x^(2) and g(x) =x ^(3) +1, then (fog) (x)

    A
    `x ^(6)+1`
    B
    `x ^(6) -1`
    C
    `(x ^(3) -1)^(2)`
    D
    `(x ^(3) + 1)^(2)`
  • Similar Questions

    Explore conceptually related problems

    If f_r(x),g_r(x),h_r(x),r=1,2,3 are differentiable function and y=|(f_1(x), g_1(x), h_1(x)), (f_2(x), g_2(x), h_2(x)),(f_3(x), g_3(x), h_3(x))| then dy/dx= |(f\'_1(x), g\'_1(x), h\'_1(x)), (f_2(x), g_2(x), h_2(x)),(f_3(x), g_3(x), h_3(x))|+ |(f_1(x), g_1(x), h_1(x)), (f\'_2(x), g\'_2(x), h\'_2(x)),(f_3(x), g_3(x), h_3(x))|+|(f_1(x), g_1(x), h_1(x)), (f_2(x), g_2(x), h_2(x)),(f\'_3(x), g\'_3(x), h\'_3(x))| On the basis of above information, answer the following question: Let f(x)=|(x^4, cosx, sinx),(24, 0, 1),(a, a^2, a^3)| , where a is a constant Then at x= pi/2, d^4/dx^4{f(x)} is (A) 0 (B) a (C) a+a^3 (D) a+a^4

    If f(x), g(x) and h(x) are second degree polynomials. Prove that sum_(r=1)^n Delta_r is independent of x where Delta_r=|[2r+1, 6n(n+2),f(x) ],[2^(r-1), 3*2^(n+1)-6, g(x)],[ r(n-r+1), n(n+1)(n+2),h(x)]|

    f(x)=x^(2)-2x,x in R, and g(x)=f(f(x)-1)+f(5-f(x)) Show that g(x)>=0AA x in R

    If :R rarr R^(+) be a differentiable function and g(x)=e^(2x)(2f(x)-3(f(x))^(2)+2(f(x))^(3))f or x in R ,then

    Let f:R -{3} to R{1} : f(x) = (x-2)/(x-3)and g:R to R , g(x)=2x-3 and f^-1(x)+g^-1(x)=13/2 then sum of all value of x is