Statement-1: The value of the integral `int_(pi//6)^(pi//3) (dx)/(1+ sqrt(tan x))` is equal to `(pi)/(6)` Statement-2: `int_(a)^(b) f(x) dx= int_(a)^(b) f(a+b-x) dx`
Text Solution
Verified by Experts
The correct Answer is:
d
Topper's Solved these Questions
DEFINITE INTEGRAL
ML KHANNA|Exercise Problem Set (6) Fill in the blanks|1 Videos
CORRELATION AND REGRESSION
ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
DETERMINANTS
ML KHANNA|Exercise Self Assessment Test |19 Videos
Similar Questions
Explore conceptually related problems
The value of the integral int_(pi//6)^(pi//3) (1)/(1+sqrt(tan x))dx is
Statement-1: The value of the integral int_(pi//6)^(pi//3) (1)/(sqrt(tan)x)dx is equal to (pi)/(6) Statement-2: int_(a)^(b) f(x)dx=int_(a)^(b) f(a+b-x)dx
Statement I: The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx)) is equal to (pi)/6 . Statement II: int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx
The value of the integral int_(pi//6)^(pi//3)(dx)/(1+tan^(5)x) is
Statement I The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tan x)) is pi/6 Statement II int_(a)^(b) f(x) dx = int_(a)^(b) f(a+b-x)dx
Statement 1: The value of the integral int_(pi//6)^(pi//3)(dx)/(1+sqrt(tanx)) is equal to pi/6 Statement 2: int_a^bf(x)dx=int_a^bf(a+b-x)dxdot Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 Statement 1 is true, Statement 2 is true; Statement 2 not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true
The value of the integral int_(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))dx is equal to
ML KHANNA-DEFINITE INTEGRAL-Miscellaneous Questions (Assertion/Reason)