Home
Class 12
MATHS
Statement-1: The value of the integral i...

Statement-1: The value of the integral `int_(pi//6)^(pi//3) (dx)/(1+ sqrt(tan x))` is equal to `(pi)/(6)`
Statement-2: `int_(a)^(b) f(x) dx= int_(a)^(b) f(a+b-x) dx`

Text Solution

Verified by Experts

The correct Answer is:
d
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx)) is equal to

The value of the integral int_(pi//6)^(pi//3)(dx)/(1+tan^(5)x) is

Knowledge Check

  • The value of the integral int_(pi//6)^(pi//3) (1)/(1+sqrt(tan x))dx is

    A
    `(pi)/(3)`
    B
    `(pi)/(6)`
    C
    `(pi)/(12)`
    D
    0
  • Statement-1: The value of the integral int_(pi//6)^(pi//3) (1)/(sqrt(tan)x)dx is equal to (pi)/(6) Statement-2: int_(a)^(b) f(x)dx=int_(a)^(b) f(a+b-x)dx

    A
    Statement-1 is true, Statement-2 is True,Statement-2 is a correct explanation for Statement-1.
    B
    Statement-1 is True, Statement-2 is not a correct explanation for Statement-1.
    C
    Statement-1 is True, Statement-2 is False.
    D
    Statement-1 is False, Statement-2 is True.
  • Statement I: The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx)) is equal to (pi)/6 . Statement II: int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

    A
    Statement I is true, statement II is true, statement II is a correct explanation for statement I
    B
    Statement I is true, statement II is true, statement II is a not a correct explanation for statement I
    C
    Statement I is true, statement II is false
    D
    Statement I is false, statement II is true
  • Similar Questions

    Explore conceptually related problems

    Statement 1: The value of the integral int_(pi//6)^(pi//3)(dx)/(1+sqrt(tanx)) is equal to pi/6 Statement 2: int_a^bf(x)dx=int_a^bf(a+b-x)dxdot Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 Statement 1 is true, Statement 2 is true; Statement 2 not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true

    Statement I The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tan x)) is pi/6 Statement II int_(a)^(b) f(x) dx = int_(a)^(b) f(a+b-x)dx

    The integral int_(7pi//4)^(7pi//3) sqrt(tan^(2) x) dx is equal to

    The integral int_(pi//24)^(5pi//24) (dx)/( 1+ root(3)(tan 2x) ) is equal to

    The value of the integral int_(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))dx is equal to