Home
Class 12
MATHS
If l1^2+m1^2+n1^2=1 etc. and l1l2+m1m2+n...

If `l_1^2+m_1^2+n_1^2=1` etc. and `l_1l_2+m_1m_2+n_1n_2=0` etc. then
`Delta=|(l_1,m_1,n_1),(l_2,m_2,n_2),(l_3,m_3,n_3)|=`

A

1

B

2

C

3

D

`pm1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the determinant \( \Delta = |(l_1, m_1, n_1), (l_2, m_2, n_2), (l_3, m_3, n_3)| \) given the conditions \( l_1^2 + m_1^2 + n_1^2 = 1 \), \( l_2^2 + m_2^2 + n_2^2 = 1 \), \( l_3^2 + m_3^2 + n_3^2 = 1 \), and the orthogonality conditions \( l_1 l_2 + m_1 m_2 + n_1 n_2 = 0 \), \( l_1 l_3 + m_1 m_3 + n_1 n_3 = 0 \), \( l_2 l_3 + m_2 m_3 + n_2 n_3 = 0 \). ### Step-by-step Solution: 1. **Understanding the Determinant**: The determinant \( \Delta \) represents the volume of the parallelepiped formed by the vectors \( (l_1, m_1, n_1) \), \( (l_2, m_2, n_2) \), and \( (l_3, m_3, n_3) \). 2. **Using Properties of Determinants**: We know that if the vectors are orthogonal and each vector has a magnitude of 1, then the volume of the parallelepiped they form is equal to the product of their magnitudes. Since all vectors are unit vectors and orthogonal, we can conclude that the determinant will be either 1 or -1. 3. **Setting Up the Determinant**: The determinant can be expressed as: \[ \Delta = \begin{vmatrix} l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3 \end{vmatrix} \] 4. **Calculating the Determinant**: We can use the property of determinants that states if we take the transpose of a matrix, the determinant remains unchanged. Thus, we can consider the determinant of the transpose: \[ \Delta^2 = \begin{vmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \\ n_1 & n_2 & n_3 \end{vmatrix} \cdot \begin{vmatrix} l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3 \end{vmatrix} \] 5. **Expanding the Determinant**: When we expand the determinant, we will find that the diagonal elements will contribute 1 (since each vector is a unit vector), and the off-diagonal elements will be 0 due to the orthogonality conditions. 6. **Final Calculation**: Thus, we find: \[ \Delta^2 = 1 \] Therefore, taking the square root gives: \[ \Delta = \pm 1 \] ### Conclusion: The value of the determinant \( \Delta \) is either \( 1 \) or \( -1 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE)|1 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS) |5 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If l_1^2+m_1^2+n_1^2=1 etc., and l_1 l_2+m_1 m_2+n_1 n_2 = 0, etc. and Delta=|(l_1,m_1,n_1),(l_2,m_2,n_2),(l_3,m_3,n_3)| then

If l_(i)^(2)+m_(i)^(2)+n_(i)^(2)=1 , (i=1,2,3) and l_(i)l_(j)+m_(i)m_(j)+n_(i)n_(j)=0,(i ne j,i,j=1,2,3) and Delta=|{:(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3)):}| then

Knowledge Check

  • If l_(1), m_(1), n_(1), l_(2), m_(2), n_(2) and l_(3), m_(3), n_(3) are direction cosines of three mutuallyy perpendicular lines then, the value of |(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3))| is

    A
    `l_(3) m_(3) n_(3)`
    B
    `+- 1`
    C
    `l_(1) m_(1) n_(1)`
    D
    `l_(2) m_(2) n_(2)`
  • Similar Questions

    Explore conceptually related problems

    Prove that the three lines from the origin O, with direction cosines l_1,m_1,n_1; l_2,m_2,n_2;l_3,m_3,n_3 are coplaner if |[l_1,m_1,n_1],[l_2,m_2,n_2],[l_3,m_3,n_3]|=0

    Two lines with direction cosines l_1,m_1,n_1 and l_2,m_2,n_2 are at righat angles iff (A) l_1l_2+m_1m_2+n_1n_2=0 (B) l_1=l_2,m_1=m_2,n_1=n_2 (C) l_1/l_2=m_1/m_2=n_1/n_2 (D) l_1l_2=m_1m_2=n_1n_2

    A=[{:(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3)):}] and B=[{:(p_(1),q_(1),r_(1)),(p_(2),q_(2),r_(2)),(p_(3),q_(3),r_(3)):}] Where p_(i), q_(i),r_(i) are the co-factors of the elements l_(i), m_(i), n_(i) for i=1,2,3 . If (l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)) and (l_(3),m_(3),n_(3)) are the direction cosines of three mutually perpendicular lines then (p_(1),q_(1), r_(1)),(p_(2),q_(2),r_(2)) and (p_(3),q_(),r_(3)) are

    The direction ratios of the bisector of the angle between the lines whose direction cosines are l_1,m_1,n_1 and l_2,m_2,n_2 are (A) l_1+l_2,m_1+m_2+n_1+n_2 (B) l_1-l_2,m_1-m_2-n_1-n_2 (C) l_1m_2-l_2m_1,m_1n_2-m_2n_1,n_1l_2-n_2l_1 (D) l_1m_2+l_2m_1,m_1n_2+m_2n_1,n_1l_2+n_2l_1

    The direction cosines of a line bisecting the angle between two perpendicular lines whose direction cosines are l_1,m_1,n_1 and l_2,m_2,n_2 are (1)(l_1+l_2)/2,(m_1+m_2)/2,(n_1+n_2)/2 (2)l_1+l_2,m_1+m_2,n_1+n_2 (3)(l_1+l_2)/(sqrt(2)),(m_1-m_2)/2,(n_1+n_2)/(sqrt(2)) (4)l_1-l_2,m_1-m_2,n_1-n_2 (5)"n o n eo ft h e s e"

    If three mutually perpendicular lines have direction cosines (l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)) and (L_(3),m_(3),n_(3)) then the line having direction cosines l_(1)+l_(2)+l_(3),m_(1)+m_(2)+m_(3), and n_(1)+n_(2)+n_(3) ,make an angle of

    Prove that the three lines from O with direction cosines l_1, m_1, n_1: l_2, m_2, n_2: l_3, m_3, n_3 are coplanar, if l_1(m_2n_3-n_2m_3)+m_1(n_2l_3-l_2n_3)+n_1(l_2m_3-l_3m_2)=0