Home
Class 12
MATHS
If the three equations are consistent ...

If the three equations are consistent
`(a+1)^3x+(a+2)^3y=(a+3)^3`
`(a+1)x+(a+2)y=(a+3)`
x + y = 1, then a =

A

1

B

2

C

`-2`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a \) such that the three equations are consistent. The equations are: 1. \( (a+1)^3 x + (a+2)^3 y = (a+3)^3 \) 2. \( (a+1)x + (a+2)y = (a+3) \) 3. \( x + y = 1 \) ### Step 1: Rewrite the equations in a standard form We can rewrite the equations as follows: 1. \( (a+1)^3 x + (a+2)^3 y - (a+3)^3 = 0 \) 2. \( (a+1)x + (a+2)y - (a+3) = 0 \) 3. \( x + y - 1 = 0 \) ### Step 2: Formulate the determinant For the system of equations to be consistent, the determinant of the coefficients must be zero. We will set up the determinant \( D \): \[ D = \begin{vmatrix} (a+1)^3 & (a+2)^3 & -(a+3)^3 \\ (a+1) & (a+2) & -(a+3) \\ 1 & 1 & -1 \end{vmatrix} \] ### Step 3: Calculate the determinant To calculate the determinant, we can use the rule of Sarrus or cofactor expansion. Here, we will expand along the third row: \[ D = -1 \cdot \begin{vmatrix} (a+1)^3 & (a+2)^3 \\ (a+1) & (a+2) \end{vmatrix} + 1 \cdot \begin{vmatrix} (a+1)^3 & -(a+3)^3 \\ (a+1) & -(a+3) \end{vmatrix} - 1 \cdot \begin{vmatrix} (a+2)^3 & -(a+3)^3 \\ (a+2) & -(a+3) \end{vmatrix} \] ### Step 4: Simplifying the determinants 1. The first determinant: \[ \begin{vmatrix} (a+1)^3 & (a+2)^3 \\ (a+1) & (a+2) \end{vmatrix} = (a+1)^3(a+2) - (a+2)^3(a+1) \] 2. The second determinant: \[ \begin{vmatrix} (a+1)^3 & -(a+3)^3 \\ (a+1) & -(a+3) \end{vmatrix} = (a+1)^3(-a-3) - (-(a+3)^3)(a+1) \] 3. The third determinant: \[ \begin{vmatrix} (a+2)^3 & -(a+3)^3 \\ (a+2) & -(a+3) \end{vmatrix} = (a+2)^3(-a-3) - (-(a+3)^3)(a+2) \] ### Step 5: Set the determinant to zero Now we set \( D = 0 \): \[ D = -\left[(a+1)^3(a+2) - (a+2)^3(a+1)\right] + \left[(a+1)^3(-a-3) - (-(a+3)^3)(a+1)\right] - \left[(a+2)^3(-a-3) - (-(a+3)^3)(a+2)\right] = 0 \] ### Step 6: Solve for \( a \) This will give us a polynomial equation in \( a \). We can simplify and solve for \( a \) using algebraic methods or numerical methods if necessary. ### Final Result After performing the calculations and solving the polynomial, we find that \( a = -2 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE)|3 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (4) (FILL IN THE BLANKS )|5 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS) |5 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Find the following system of equations is consistent,(a+1)^(3)x+(a+2)^(3)y=(a+3)^(3)(a+1)x+(a+1)y=a+3x+y=1 then find the value of a

{:(2x + 3y = 7),((a - 1)x +(a +2)y = 3a):}

Knowledge Check

  • If (2x + y + 2)/(5) = ( 3x - y + 1)/( 3 ) = ( 2 x + 2y + 1 )/(6) then

    A
    ` x = 1, y = 1 `
    B
    ` x = - 1, y = - 1 `
    C
    `x = 1 , y = 2 `
    D
    ` x = 2, y = 1 `
  • If the system of equations ax+y=1,x+2y=3,2x+3y=5 are consistent, then a is given by

    A
    0
    B
    1
    C
    2
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    If the system of equation (k+1)^(3)x+(k+2)^(3)y=(k+3)^(3),(k+1)x+(k+2)y=k+3,x+y=1 is consistent,then the value of k is

    2x + 5y = 1 , 2x + 3y = 3 .

    (x) / (2) + (y) / (3) = 1 (x) / (3) + (y) / (2) = 1

    3x+2y=8 2x-3y=1

    Factorise the (x + 2y - 3) ( x + 2) + (x + 2y- 3) ( 3y +1)

    Classify the following system of equations as consistent or inconsistent : {:(x+2y=2),(2x+3y=3):}