Home
Class 12
MATHS
If the three equations are consistent ...

If the three equations are consistent
`(a+1)^3x+(a+2)^3y=(a+3)^3`
`(a+1)x+(a+2)y=(a+3)`
x + y = 1, then a =

A

1

B

2

C

`-2`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a \) such that the three equations are consistent. The equations are: 1. \( (a+1)^3 x + (a+2)^3 y = (a+3)^3 \) 2. \( (a+1)x + (a+2)y = (a+3) \) 3. \( x + y = 1 \) ### Step 1: Rewrite the equations in a standard form We can rewrite the equations as follows: 1. \( (a+1)^3 x + (a+2)^3 y - (a+3)^3 = 0 \) 2. \( (a+1)x + (a+2)y - (a+3) = 0 \) 3. \( x + y - 1 = 0 \) ### Step 2: Formulate the determinant For the system of equations to be consistent, the determinant of the coefficients must be zero. We will set up the determinant \( D \): \[ D = \begin{vmatrix} (a+1)^3 & (a+2)^3 & -(a+3)^3 \\ (a+1) & (a+2) & -(a+3) \\ 1 & 1 & -1 \end{vmatrix} \] ### Step 3: Calculate the determinant To calculate the determinant, we can use the rule of Sarrus or cofactor expansion. Here, we will expand along the third row: \[ D = -1 \cdot \begin{vmatrix} (a+1)^3 & (a+2)^3 \\ (a+1) & (a+2) \end{vmatrix} + 1 \cdot \begin{vmatrix} (a+1)^3 & -(a+3)^3 \\ (a+1) & -(a+3) \end{vmatrix} - 1 \cdot \begin{vmatrix} (a+2)^3 & -(a+3)^3 \\ (a+2) & -(a+3) \end{vmatrix} \] ### Step 4: Simplifying the determinants 1. The first determinant: \[ \begin{vmatrix} (a+1)^3 & (a+2)^3 \\ (a+1) & (a+2) \end{vmatrix} = (a+1)^3(a+2) - (a+2)^3(a+1) \] 2. The second determinant: \[ \begin{vmatrix} (a+1)^3 & -(a+3)^3 \\ (a+1) & -(a+3) \end{vmatrix} = (a+1)^3(-a-3) - (-(a+3)^3)(a+1) \] 3. The third determinant: \[ \begin{vmatrix} (a+2)^3 & -(a+3)^3 \\ (a+2) & -(a+3) \end{vmatrix} = (a+2)^3(-a-3) - (-(a+3)^3)(a+2) \] ### Step 5: Set the determinant to zero Now we set \( D = 0 \): \[ D = -\left[(a+1)^3(a+2) - (a+2)^3(a+1)\right] + \left[(a+1)^3(-a-3) - (-(a+3)^3)(a+1)\right] - \left[(a+2)^3(-a-3) - (-(a+3)^3)(a+2)\right] = 0 \] ### Step 6: Solve for \( a \) This will give us a polynomial equation in \( a \). We can simplify and solve for \( a \) using algebraic methods or numerical methods if necessary. ### Final Result After performing the calculations and solving the polynomial, we find that \( a = -2 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE)|3 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (4) (FILL IN THE BLANKS )|5 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS) |5 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Find the following system of equations is consistent,(a+1)^(3)x+(a+2)^(3)y=(a+3)^(3)(a+1)x+(a+1)y=a+3x+y=1 then find the value of a

{:(2x + 3y = 7),((a - 1)x +(a +2)y = 3a):}

If the system of equation (k+1)^(3)x+(k+2)^(3)y=(k+3)^(3),(k+1)x+(k+2)y=k+3,x+y=1 is consistent,then the value of k is

2x + 5y = 1 , 2x + 3y = 3 .

If (2x + y + 2)/(5) = ( 3x - y + 1)/( 3 ) = ( 2 x + 2y + 1 )/(6) then

If the system of equations ax+y=1,x+2y=3,2x+3y=5 are consistent, then a is given by

(x) / (2) + (y) / (3) = 1 (x) / (3) + (y) / (2) = 1

3x+2y=8 2x-3y=1

Classify the following system of equations as consistent or inconsistent : {:(x+2y=2),(2x+3y=3):}

ML KHANNA-DETERMINANTS -Problem Set (4) (MULTIPLE CHOICE QUESTIONS)
  1. If the three equations are consistent (a+1)^3x+(a+2)^3y=(a+3)^3 (a...

    Text Solution

    |

  2. The value of a for which the system of equations a^3x+(a+1)^3y+(a+2)...

    Text Solution

    |

  3. If the system of linear equations. x +4ay+az=0 x+ 3by +bz=0 x+...

    Text Solution

    |

  4. If a=x/(y-z),b=y/(z-x) and c = z/(x-y) where x,y,z are not all zero , ...

    Text Solution

    |

  5. Given x = cy + bz, y = az + cx, z = bx + ay where x, y, z are not all ...

    Text Solution

    |

  6. x+ ay = 0, y + az=0, z+ ax=0 The value of a for which the system of eq...

    Text Solution

    |

  7. If the system of equations x= a(y+z), y=b(z + x), z=c(x + y),(a,b,cne ...

    Text Solution

    |

  8. If the system of equations x + ay + az = 0 bx + y + bz = 0 cx + ...

    Text Solution

    |

  9. If ane p , b ne q , c ne r and |(p,b,c),(a,q,c),(a,b,r)|=0 , then p/(...

    Text Solution

    |

  10. If x,y,z are not all zeros and ax+ y +z=0, x+by +z=0, x + y + cz=0 th...

    Text Solution

    |

  11. If the equations x + ay – z=0,2x -y + az=0 and ax + y + 2z=0 are consi...

    Text Solution

    |

  12. If the equations ax+by + cz=0, bx + cy + az=0 and cx + ay + bz=0 have ...

    Text Solution

    |

  13. If the equations (b + c) x+(c+a) y +(a+b)z =0, cx+ay+bz=0, ax+by+cz=...

    Text Solution

    |

  14. If a gt b gt c and the system of equtions ax +by +by +cz =0,n bx +cy+a...

    Text Solution

    |

  15. If the system of equations x – ky – z = 0, kx – y – z=0, x + y – z = 0...

    Text Solution

    |

  16. The number of values of k for which the system of equations (k+1) x+...

    Text Solution

    |

  17. Let a ,b , c be the real numbers. The following system of equations in...

    Text Solution

    |

  18. The system of equations lamdax+y +z=1, x+lamday+z=lamda and x+y+lamdaz...

    Text Solution

    |

  19. 2x - y - 2z=2, x-2y+z=-4, x+y + lamdaz=4 then the value of lamda such...

    Text Solution

    |

  20. A line AB in three-dimensional space makes angles 45^@ and 120^@ with...

    Text Solution

    |