Home
Class 12
MATHS
If the line lx + my = 1 be a tangent to ...

If the line `lx + my = 1` be a tangent to the circle `x^(2)+y^(2)=a^(2)`, then the point `(l, m)` lies on

A

ellipse

B

parabola

C

circle

D

none

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE)|2 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS)|6 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS) |10 Videos
  • TANGENTS AND NORMALS

    ML KHANNA|Exercise SELF ASSESSMENT TEST (MULTIPLE CHOICE QUESTIONS)|19 Videos
  • THE ELLIPSE

    ML KHANNA|Exercise SELF ASSESSMENT TEST|9 Videos

Similar Questions

Explore conceptually related problems

If the line lx+my+n=0 is tangent to the circle x^(2)+y^(2)=a^(2) , then find the condition.

If 1x+my-1=0 touches the circle x^(2)+y^(2)=a^(2) then the point (1,m) lies on the circle

Knowledge Check

  • The line lx+my+n=0 is a tangent to the curve y=x-x^2+x^3 , then

    A
    `lgt0,mgt0`
    B
    `llt0,mlt0`
    C
    `lmgt0`
    D
    `lmlt0`
  • If lx + my + n = 0 is tangent to the parabola x^(2)=y , them

    A
    `t^(2)=2mn`
    B
    `i=4m^(2)n^(2)`
    C
    `m^(2)=4/n`
    D
    `l^(2)=4mn`
  • If a line, y = mx + c is a tangent to the circle, (x-1)^2 + y^2 =1 and it is perpendicular to a line L_1 , where L_1 is the tangent to the circle x^2 + y^2 = 8 at the point (2, 2), then :

    A
    `C^2 + 2c -1=0`
    B
    `c^2 -2 c +1=0`
    C
    `c^2 -2c -1=0`
    D
    `c^2 + 2c+2=0`
  • Similar Questions

    Explore conceptually related problems

    If the line lx+my+n=0 is tangent to the circle x^2+y^2-2ax=0 then find the condition

    The equation of the line parallel to the tangent to the circle x^(2)+y^(2)=r^(2) at the point (x_(1),y_(1)) and passing through origin is

    If the line lx+my-1=0 touches the circle x^(2)+y^(2)=a^(2), then prove that (l,m) lies on a circle.

    If lx+my=1 touches the circle x^(2)+y^(2)=a^(2) , prove that the point (l,m) lies on the circle x^(2)+y^(2)=a^(-2)

    If the line lx+my+n=0 touches the circle x^(2)+y^(2)=a^(2), then prove that (l^(2)+m^(2))^(2)=n^(2)