Home
Class 12
MATHS
int(logx)/x^2dx =...

`int(logx)/x^2dx =`

A

`1/x(logx+1)`

B

`-1/x (log x+1)`

C

`1/x (log x-1)`

D

`log (x+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\log x}{x^2} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = \log x \). Then, the derivative of \( t \) with respect to \( x \) is given by: \[ dt = \frac{1}{x} \, dx \quad \Rightarrow \quad dx = x \, dt \] Since \( x = e^t \), we can substitute \( dx \) in terms of \( t \): \[ dx = e^t \, dt \] ### Step 2: Rewrite the Integral Now, we can rewrite the integral using the substitution: \[ \int \frac{\log x}{x^2} \, dx = \int \frac{t}{(e^t)^2} \cdot e^t \, dt = \int \frac{t}{e^t} \, dt \] ### Step 3: Integration by Parts To solve \( \int \frac{t}{e^t} \, dt \), we will use integration by parts. Let: - \( u = t \) (thus \( du = dt \)) - \( dv = e^{-t} \, dt \) (thus \( v = -e^{-t} \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int \frac{t}{e^t} \, dt = -t e^{-t} - \int -e^{-t} \, dt \] \[ = -t e^{-t} + \int e^{-t} \, dt \] \[ = -t e^{-t} - e^{-t} + C \] ### Step 4: Factor Out Common Terms Now, we can factor out \( -e^{-t} \): \[ = -e^{-t}(t + 1) + C \] ### Step 5: Substitute Back Now we substitute back \( t = \log x \): \[ = -\frac{1}{e^{\log x}}(\log x + 1) + C \] Since \( e^{\log x} = x \): \[ = -\frac{\log x + 1}{x} + C \] ### Final Answer Thus, the final answer for the integral \( \int \frac{\log x}{x^2} \, dx \) is: \[ -\frac{\log x + 1}{x} + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int(logx)/(x^(2))dx .

int(logx-1)/(x)dx

Knowledge Check

  • int(logx)/(x^3)dx=

    A
    `(1)/(4x^2)(2logx-1)+c`
    B
    `(-1)/(4x^2)(2logx+1)+c`
    C
    `(1)/(4x^2)(2logx+1)+c`
    D
    `(1)/(4x^2)(1-2logx)+c`
  • int(logx)/(x)dx=?

    A
    `(1)/(2)(logx)^(2)+C`
    B
    `-(1)/(2)(logx)^(2)+C`
    C
    `(2)/(x^(2))+C`
    D
    `(-2)/(x^(2))+C`
  • int(logx)^(2)dx=?

    A
    `(2logx)/(x)+C`
    B
    `(1)/(3)(logx)^(3)+C`
    C
    `x(logx)^(2)-2xlogx+2x+C`
    D
    `x(logx)^(2)-2xlogx-2x+C`
  • Similar Questions

    Explore conceptually related problems

    Evaluate : int(logx)^(2)dx .

    int_a^b logx/x^2dx

    int(logx)/(x^(2))dx=?

    int(logx)/(x+1)^2dx=

    int 2^(logx) dx = ?