Home
Class 12
MATHS
int(0)^(pi) log (1 +cos x) dx=...

`int_(0)^(pi) log (1 +cos x) dx`=

A

`pi "log" (1)/(2)`

B

`(pi)/(2) log 2`

C

`-pi log 2`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\pi} \log(1 + \cos x) \, dx \), we will use the property of definite integrals and some logarithmic identities. Here’s the step-by-step solution: ### Step 1: Define the Integral Let \[ I = \int_0^{\pi} \log(1 + \cos x) \, dx \] ### Step 2: Use the Property of Definite Integrals We can use the property that states: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] In our case, we set \( a = \pi \): \[ I = \int_0^{\pi} \log(1 + \cos(\pi - x)) \, dx \] Since \( \cos(\pi - x) = -\cos x \), we have: \[ I = \int_0^{\pi} \log(1 - \cos x) \, dx \] ### Step 3: Add the Two Integrals Now we add both representations of \( I \): \[ 2I = \int_0^{\pi} \log(1 + \cos x) \, dx + \int_0^{\pi} \log(1 - \cos x) \, dx \] Using the logarithmic property \( \log a + \log b = \log(ab) \): \[ 2I = \int_0^{\pi} \log((1 + \cos x)(1 - \cos x)) \, dx \] ### Step 4: Simplify the Expression Now, simplify the expression inside the logarithm: \[ (1 + \cos x)(1 - \cos x) = 1 - \cos^2 x = \sin^2 x \] Thus, we have: \[ 2I = \int_0^{\pi} \log(\sin^2 x) \, dx \] ### Step 5: Use the Logarithmic Identity We can use the identity \( \log(a^b) = b \log a \): \[ 2I = 2 \int_0^{\pi} \log(\sin x) \, dx \] Dividing both sides by 2: \[ I = \int_0^{\pi} \log(\sin x) \, dx \] ### Step 6: Evaluate the Integral We know from a standard result that: \[ \int_0^{\pi} \log(\sin x) \, dx = -\frac{\pi}{2} \log 2 \] Thus, \[ I = -\frac{\pi}{2} \log 2 \] ### Final Result Therefore, the value of the integral is: \[ \int_0^{\pi} \log(1 + \cos x) \, dx = -\frac{\pi}{2} \log 2 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) (Multiple Choice Questions)|47 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

Knowledge Check

  • int_(0)^(pi//2) log (cotx ) dx=

    A
    `pi/4`
    B
    `pi/2`
    C
    0
    D
    `pi`
  • int_(0)^(pi//2)log (sec x) dx=

    A
    `(-pi)/2log2`
    B
    `pi/2 log 2`
    C
    `(-pi)/4 log 2`
    D
    `pi/4log2`
  • If int_(0)^(pi//2) log cos x dx =(pi)/(2)log ((1)/(2)), then int_(0)^(pi//2) log sec x dx =

    A
    `(pi)/(2)log ""((1)/(2))`
    B
    `1-(pi)/(2)log ""((1)/(2))`
    C
    `1+(pi)/(2) log ""((1)/(2))`
    D
    `(pi)/(2) log 2`
  • Similar Questions

    Explore conceptually related problems

    Find I=int_(0)^( pi)ln(1+cos x)dx

    int_(0)^((pi)/(2))log(cos x)dx=

    If|a|lt 1, show that int _(0)^(pi)(log(1+a cos x ))/( cos x)dx =pi sin^(-1) a

    If int_(0)^(pi//2) log(cosx) dx=pi/2 log (1/2), then int_(0) ^(pi//2) log (sec x ) dx =

    int_(0)^(pi//2) log (tan x ) dx=