Home
Class 12
MATHS
If f(x) is periodic with period T, then ...

If f(x) is periodic with period T, then `int_(a+2T)^(b+2T) f(x) dx= int_(a)^(b) f(x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that if \( f(x) \) is periodic with period \( T \), then \[ \int_{a+2T}^{b+2T} f(x) \, dx = \int_{a}^{b} f(x) \, dx, \] we can follow these steps: ### Step 1: Substitute for the variable Let \( y = x - T \). Then, \( x = y + T \) and \( dx = dy \). ### Step 2: Change the limits of integration When \( x = a + 2T \), then \( y = (a + 2T) - T = a + T \). When \( x = b + 2T \), then \( y = (b + 2T) - T = b + T \). Thus, we can rewrite the integral: \[ \int_{a+2T}^{b+2T} f(x) \, dx = \int_{a+T}^{b+T} f(y + T) \, dy. \] ### Step 3: Use the periodicity of the function Since \( f(x) \) is periodic with period \( T \), we have: \[ f(y + T) = f(y). \] ### Step 4: Substitute back into the integral Now we can substitute this back into our integral: \[ \int_{a+T}^{b+T} f(y + T) \, dy = \int_{a+T}^{b+T} f(y) \, dy. \] ### Step 5: Change the variable of integration Let’s change the variable of integration from \( y \) to \( z \) where \( z = y \). Thus, we have: \[ \int_{a+T}^{b+T} f(y) \, dy = \int_{a}^{b} f(z) \, dz. \] ### Step 6: Conclude the proof Finally, we can conclude that: \[ \int_{a+2T}^{b+2T} f(x) \, dx = \int_{a}^{b} f(x) \, dx. \] This completes the proof.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) (Multiple Choice Questions)|47 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) (Multiple Choice Questions)|31 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

Prove that int_(a)^(b) f(x) dx= int_(a)^(b) f(a+b-x) dx

Prove that the equality int_(a)^(b) f(x) dx = int_(a)^(b) f(a + b - x) dx

Knowledge Check

  • Statement-1: int_(0)^(npi+v)|sin x|dx=2n+1-cos v where n in N and 0 le v lt pi . Stetement-2: If f(x) is a periodic function with period T, then (i) int_(0)^(nT) f(x)dx=n int_(0)^(T) f(x)dx , where n in N and (ii) int_(nT)^(nt+a) f(x)dx=int_(0)^(a) f(x) dx , where n in N

    A
    Statement-1 is true, Statement-2 is True,Statement-2 is a correct explanation for Statement-1.
    B
    Statement-1 is True, Statement-2 is not a correct explanation for Statement-1.
    C
    Statement-1 is True, Statement-2 is False.
    D
    Statement-1 is False, Statement-2 is True.
  • If f (x) is monotonic differentiable function on [a,b] then int_(a)^(b) f(x) dx + int_(f (a))^(f(b)) f^(-1) (x) dx =

    A
    `b f(a)- af(b)`
    B
    `bf(b)- af (a)`
    C
    `f(a ) + f(b)`
    D
    cannot be found
  • Let f be a periodic continuous function with period T gt 0 . If I= int_(0)^(T) f(x) dx Then the value of I_(1) = int_(4)^(4+4T) f(3x) dx is

    A
    `I`
    B
    `2I`
    C
    `3I`
    D
    `4I`
  • Similar Questions

    Explore conceptually related problems

    Property 4: If f(x) is a comtinuous function on [a;b] then int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

    Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

    Property 3:int_(a)^(b)f(x)dx=int_(a)^(c)f(x)dx+int_(c)^(b)f(x)dx

    If f(a+b-x)=f(x), then prove that int_(a)^(b)xf(x)dx=(a+b)/(2)int_(a)^(b)f(x)dx

    Property 1: Integration is independent of the change of variable.int_(a)^(b)f(x)dx=int_(a)^(b)f(t)dt