Home
Class 12
MATHS
If I(n)= int(1)^(e ) log^(n) x dx and I(...

If `I_(n)= int_(1)^(e ) log^(n) x dx and I_(n)= a +b I_(n-1)` then a= …. and b= …..

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I_n = \int_1^e \log^n x \, dx \) and express it in the form \( I_n = a + b I_{n-1} \). Let's go through the steps systematically. ### Step 1: Define the integral We start with the integral: \[ I_n = \int_1^e \log^n x \, dx \] ### Step 2: Integration by parts We will use integration by parts, where we let: - \( u = \log^n x \) (the first function) - \( dv = dx \) (the second function) Now, we need to differentiate \( u \) and integrate \( dv \): - \( du = n \log^{n-1} x \cdot \frac{1}{x} \, dx \) - \( v = x \) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \), we have: \[ I_n = \left[ x \log^n x \right]_1^e - \int_1^e x \cdot n \log^{n-1} x \cdot \frac{1}{x} \, dx \] ### Step 3: Evaluate the boundary term Now we evaluate the boundary term: \[ \left[ x \log^n x \right]_1^e = \left( e \cdot \log^n e \right) - \left( 1 \cdot \log^n 1 \right) = e \cdot 1^n - 1 \cdot 0 = e - 0 = e \] ### Step 4: Simplify the integral Now we simplify the integral: \[ I_n = e - n \int_1^e \log^{n-1} x \, dx \] This integral is \( I_{n-1} \): \[ I_n = e - n I_{n-1} \] ### Step 5: Rearranging the equation Rearranging the equation gives us: \[ I_n = e - n I_{n-1} \] ### Step 6: Identify constants a and b From the equation \( I_n = a + b I_{n-1} \), we can identify: - \( a = e \) - \( b = -n \) ### Final Result Thus, the values of \( a \) and \( b \) are: \[ a = e, \quad b = -n \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (3) True and False|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) (Multiple Choice Questions)|47 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

I_(n)=int_(1)^(e)(log)^(n)dx and I_(n)=A+BI_(n+1) then A&B=

If I_(n)=int_(1)^(e)(log x)^(n)dx then I_(8)+8I_(7)=

Knowledge Check

  • If I_(n)=int_(1)^(e)(log x)^(n) d x, then I_(n)+nI_(n-1) equal to

    A
    `(1)/(e)`
    B
    e
    C
    `e-1`
    D
    None of these
  • If = int_(1)^(e) (logx)^(n) dx, "then"I_(n)+nI_(n-1) is equal to

    A
    `1//e`
    B
    e
    C
    `e-1`
    D
    none of these
  • If I_(n) int_(0)^(4) x dx then what is I_(n) + I_(n-2) equal to ?

    A
    `1/n`
    B
    `(1)/((n-1))`
    C
    `n/((n-1))`
    D
    `(1)/((n-2))`
  • Similar Questions

    Explore conceptually related problems

    If I_(n)=int(ln x)^(n)dx then I_(n)+nI_(n-1)

    Evaluate I _(n) = int _(1) ^(e) (ln ^(n) x) dx hence find I _(3).

    If I_(n)=int_(0)^(pi//4)tan^(n)x dx, then 7(I_(6)+I_(8))=

    If I_(n)=int(logx)^(n)dx for all n epsilon N, I_(n)+nI_(n-1)=

    If I_(n) = int_(0)^(1) ( cos^(-1) x)^(n) dx then I_(6)- 360 I_(2) is given by