Home
Class 12
MATHS
int(log 1//2)^(log 2) sin {(e^(x)-1)/(e^...

`int_(log 1//2)^(log 2) sin {(e^(x)-1)/(e^(x) +1}dx`=

A

`"cos"(1)/(3)`

B

`"sin"(1)/(2)`

C

2cos 2

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\log \frac{1}{2}}^{\log 2} \sin\left(\frac{e^x - 1}{e^x + 1}\right) \, dx, \] we will use the property of odd functions in definite integrals. ### Step 1: Change the limits of integration First, we can rewrite the lower limit of integration: \[ \log \frac{1}{2} = \log 2^{-1} = -\log 2. \] Thus, we can express the integral as: \[ I = \int_{-\log 2}^{\log 2} \sin\left(\frac{e^x - 1}{e^x + 1}\right) \, dx. \] ### Step 2: Check if the function is odd Next, we define the function: \[ f(x) = \sin\left(\frac{e^x - 1}{e^x + 1}\right). \] To check if \( f(x) \) is an odd function, we need to evaluate \( f(-x) \): \[ f(-x) = \sin\left(\frac{e^{-x} - 1}{e^{-x} + 1}\right). \] ### Step 3: Simplify \( f(-x) \) We can simplify \( f(-x) \): \[ f(-x) = \sin\left(\frac{\frac{1}{e^x} - 1}{\frac{1}{e^x} + 1}\right) = \sin\left(\frac{1 - e^x}{1 + e^x}\right). \] Now, we can factor out a negative sign: \[ f(-x) = \sin\left(-\frac{e^x - 1}{e^x + 1}\right) = -\sin\left(\frac{e^x - 1}{e^x + 1}\right) = -f(x). \] ### Step 4: Conclude that \( f(x) \) is odd Since \( f(-x) = -f(x) \), we conclude that \( f(x) \) is an odd function. ### Step 5: Use the property of odd functions in definite integrals The property of definite integrals states that if \( f(x) \) is an odd function over a symmetric interval \([-a, a]\): \[ \int_{-a}^{a} f(x) \, dx = 0. \] In our case, we have: \[ I = \int_{-\log 2}^{\log 2} f(x) \, dx = 0. \] ### Final Result Thus, the value of the integral is: \[ \int_{\log \frac{1}{2}}^{\log 2} \sin\left(\frac{e^x - 1}{e^x + 1}\right) \, dx = 0. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (3) True and False|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to

Evaluate int_(log1//3)^(log3)tan((e^(x)-1)/(e^(x)+1))dx

Knowledge Check

  • int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

    A
    log 6
    B
    `log((2)/(3))`
    C
    `log((3)/(2))`
    D
    log 8
  • int_(1)^(e) log (x) dx=

    A
    1
    B
    e
    C
    `e-1`
    D
    `1-e`
  • Similar Questions

    Explore conceptually related problems

    Evaluate int_(log1//3)^(log3)tan((e^(x)-1)/(e^(x)+1))dx

    int(ln(e^(x)+1))/(e^(x))dx

    int log(e^(x)+1)(e^(x))dx

    int_(log(1/3))^(log3) sin((e^x-1)/(e^x+1))dx= (A) log3 (B) sin3 (C) 2sin3 (D) 0

    int ln((1)/(e^(x)))dx

    int e^(x) (e^(log x)+1) dx