Home
Class 12
MATHS
I= int(-pi//3)^(pi//3) (x sin x)/(cos^(2...

`I= int_(-pi//3)^(pi//3) (x sin x)/(cos^(2)x) dx` is equal to

A

`((pi)/(3)- log "tan"(3pi)/(2))`

B

`2((2pi)/(3)- log "tan"(5pi)/(12))`

C

`3((pi)/(2)- "log sin"(5pi)/(12))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{x \sin x}{\cos^2 x} \, dx \), we can use the properties of definite integrals. ### Step 1: Identify the function Let \( f(x) = \frac{x \sin x}{\cos^2 x} \). ### Step 2: Check the symmetry of the function We need to check if \( f(-x) = -f(x) \) or \( f(-x) = f(x) \). Calculating \( f(-x) \): \[ f(-x) = \frac{-x \sin(-x)}{\cos^2(-x)} = \frac{-x (-\sin x)}{\cos^2 x} = \frac{x \sin x}{\cos^2 x} = f(x) \] Since \( f(-x) = f(x) \), the function is even. ### Step 3: Apply the property of definite integrals Since \( f(x) \) is even, we can use the property: \[ \int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx \] Thus, \[ I = 2 \int_{0}^{\frac{\pi}{3}} \frac{x \sin x}{\cos^2 x} \, dx \] ### Step 4: Rewrite the integrand We can rewrite the integrand: \[ \frac{x \sin x}{\cos^2 x} = x \tan x \sec x \] So, \[ I = 2 \int_{0}^{\frac{\pi}{3}} x \tan x \sec x \, dx \] ### Step 5: Integration by parts Let \( u = x \) and \( dv = \tan x \sec x \, dx \). Then, \( du = dx \) and \( v = \sec x \). Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We have: \[ I = 2 \left[ x \sec x \bigg|_{0}^{\frac{\pi}{3}} - \int_{0}^{\frac{\pi}{3}} \sec x \, dx \right] \] ### Step 6: Evaluate the boundary term Calculating the boundary term: \[ x \sec x \bigg|_{0}^{\frac{\pi}{3}} = \left( \frac{\pi}{3} \sec\left(\frac{\pi}{3}\right) - 0 \cdot \sec(0) \right) \] Since \( \sec\left(\frac{\pi}{3}\right) = 2 \): \[ = \frac{\pi}{3} \cdot 2 = \frac{2\pi}{3} \] ### Step 7: Evaluate the integral of sec x The integral of \( \sec x \) is: \[ \int \sec x \, dx = \ln |\sec x + \tan x| + C \] Thus, \[ \int_{0}^{\frac{\pi}{3}} \sec x \, dx = \ln \left| \sec\left(\frac{\pi}{3}\right) + \tan\left(\frac{\pi}{3}\right) \right| - \ln \left| \sec(0) + \tan(0) \right| \] Calculating: \[ \sec\left(\frac{\pi}{3}\right) = 2, \quad \tan\left(\frac{\pi}{3}\right) = \sqrt{3}, \quad \sec(0) = 1, \quad \tan(0) = 0 \] Thus, \[ \int_{0}^{\frac{\pi}{3}} \sec x \, dx = \ln(2 + \sqrt{3}) - \ln(1) = \ln(2 + \sqrt{3}) \] ### Step 8: Combine results Putting it all together: \[ I = 2 \left( \frac{2\pi}{3} - \ln(2 + \sqrt{3}) \right) \] Thus, \[ I = \frac{4\pi}{3} - 2\ln(2 + \sqrt{3}) \] ### Final Answer \[ I = \frac{4\pi}{3} - 2\ln(2 + \sqrt{3}) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (3) True and False|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(-pi//2)^(pi//2) (5sin^3 x+8sinx+4 cos^2x) dx

int_(-pi)^( pi)sin x[f(cos x)]dx is equal to

Knowledge Check

  • int_(0)^(pi//6) (sin x) /(cos^(3)x) dx is

    A
    `(2)/(3)`
    B
    `(1)/(6)`
    C
    2
    D
    `(1)/(3)`
  • The value of int_(-pi)^(pi) sin^(3) x cos^(2) x dx is equal to

    A
    1
    B
    2
    C
    3
    D
    0
  • What is int_(-pi//6)^(pi//6) (sin^5 x cos^3 x)/x^4 dx equal to

    A
    `pi/2`
    B
    `pi/4`
    C
    `pi/8`
    D
    0
  • Similar Questions

    Explore conceptually related problems

    int_(-pi)^pi (sin^4 x)/(sin^4x+cos^4x) dx is equal to

    int_(0)^(pi//2) (sin^(2)x)/(sin x+cos x) dx is equal to

    int_(0)^(pi//4)(sin x + cos x)/(3 + sin 2x) dx is equal to

    int _(0)^(pi//3) (cos x + sin x)/(sqrt(1+sin 2x))dx is equal to

    If int_(0)^(pi//4) (x sin x)/( cos^(3) x) dx= (pi)/(4) +A , then A is equal to