Home
Class 12
MATHS
If f(x) is an integrable function in ((p...

If f(x) is an integrable function in `((pi)/(6), (pi)/(3)) and I_(1)= int_(pi//6)^(pi//3) sec^(2) x f (2 sin 2x)dx and I_(2) = int_(pi//6)^(pi//3) cosec^(2) x f (2sin 2x) dx`, then:

A

`I_(1)= 2I_(2)`

B

`2I_(1)= I_(2)`

C

`I_(1)= I_(2)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze the integrals \( I_1 \) and \( I_2 \) and find a relationship between them. ### Step 1: Define the integrals We have: \[ I_1 = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec^2 x \cdot f(2 \sin 2x) \, dx \] \[ I_2 = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \csc^2 x \cdot f(2 \sin 2x) \, dx \] ### Step 2: Use the property of definite integrals We will use the substitution \( x = \frac{\pi}{2} - t \). The differential \( dx \) becomes \( -dt \). The limits change as follows: - When \( x = \frac{\pi}{6} \), \( t = \frac{\pi}{2} - \frac{\pi}{6} = \frac{\pi}{3} \) - When \( x = \frac{\pi}{3} \), \( t = \frac{\pi}{2} - \frac{\pi}{3} = \frac{\pi}{6} \) Thus, we can rewrite \( I_1 \): \[ I_1 = \int_{\frac{\pi}{3}}^{\frac{\pi}{6}} \sec^2\left(\frac{\pi}{2} - t\right) f\left(2 \sin\left(2\left(\frac{\pi}{2} - t\right)\right)\right)(-dt) \] Using the identities \( \sec\left(\frac{\pi}{2} - t\right) = \csc t \) and \( \sin\left(2\left(\frac{\pi}{2} - t\right)\right) = \sin(\pi - 2t) = \sin(2t) \), we can simplify: \[ I_1 = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \csc^2 t \cdot f(2 \sin 2t) \, dt \] This shows that: \[ I_1 = I_2 \] ### Conclusion Thus, we have shown that: \[ I_1 = I_2 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) True and false|3 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(pi/6)^( pi/3)sin(3x)dx

int_(pi/6)^(pi/3) (sin x+ cos x)/(sqrt(sin 2x))dx

Knowledge Check

  • int_(pi//6)^(pi//3)cos^(2)x dx=

    A
    `(pi)/(6)`
    B
    `(pi)/(12)`
    C
    `(sqrt(3)-1)/(2)`
    D
    `(sqrt(3)+1)/(2)`
  • If f(x) is an integrable function on [(pi)/(6),(pi)/(3)] and I_(1)=int_(pi//6)^(pi//3) sec^(2)thetaf(2 sin 2theta)d theta" and "I_(2)=int_(pi//6)^(pi//3) "cosec"^(2)theta f(2 sin2theta)d theta , then

    A
    `I_(1)=2I_(2)`
    B
    `I_(1)=3I_(2)`
    C
    `2I_(1)=I_(2)`
    D
    none of these
  • int_(pi//6)^(pi//4)cosec 2x dx=

    A
    `log3`
    B
    `logsqrt(3)`
    C
    `log9`
    D
    `1/2logsqrt(3)`
  • Similar Questions

    Explore conceptually related problems

    I= int_(-pi//3)^(pi//3) (x sin x)/(cos^(2)x) dx is equal to

    int_(pi//6)^(pi//3) sin(3x)dx=

    int_(pi//3)^(pi//2) dx/(sinx+ sin 2x)=

    If I_(1) = int_(0)^(pi//2)ln (sin x)dx , I_(2)=int_(-pi//4)^(pi//4)ln (sin x + cos x)dx , then :

    If I_(1)= int_(0)^(pi) x f {sin^(3) x +cos^(2)x} dx and I_(2)= pi int_(0)^(pi//2) f (sin^(3)x + cos^(2) x}dx then