Home
Class 12
MATHS
If f(x) is an integrable function in ((p...

If f(x) is an integrable function in `((pi)/(6), (pi)/(3)) and I_(1)= int_(pi//6)^(pi//3) sec^(2) x f (2 sin 2x)dx and I_(2) = int_(pi//6)^(pi//3) cosec^(2) x f (2sin 2x) dx`, then:

A

`I_(1)= 2I_(2)`

B

`2I_(1)= I_(2)`

C

`I_(1)= I_(2)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze the integrals \( I_1 \) and \( I_2 \) and find a relationship between them. ### Step 1: Define the integrals We have: \[ I_1 = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec^2 x \cdot f(2 \sin 2x) \, dx \] \[ I_2 = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \csc^2 x \cdot f(2 \sin 2x) \, dx \] ### Step 2: Use the property of definite integrals We will use the substitution \( x = \frac{\pi}{2} - t \). The differential \( dx \) becomes \( -dt \). The limits change as follows: - When \( x = \frac{\pi}{6} \), \( t = \frac{\pi}{2} - \frac{\pi}{6} = \frac{\pi}{3} \) - When \( x = \frac{\pi}{3} \), \( t = \frac{\pi}{2} - \frac{\pi}{3} = \frac{\pi}{6} \) Thus, we can rewrite \( I_1 \): \[ I_1 = \int_{\frac{\pi}{3}}^{\frac{\pi}{6}} \sec^2\left(\frac{\pi}{2} - t\right) f\left(2 \sin\left(2\left(\frac{\pi}{2} - t\right)\right)\right)(-dt) \] Using the identities \( \sec\left(\frac{\pi}{2} - t\right) = \csc t \) and \( \sin\left(2\left(\frac{\pi}{2} - t\right)\right) = \sin(\pi - 2t) = \sin(2t) \), we can simplify: \[ I_1 = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \csc^2 t \cdot f(2 \sin 2t) \, dt \] This shows that: \[ I_1 = I_2 \] ### Conclusion Thus, we have shown that: \[ I_1 = I_2 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) True and false|3 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(pi//6)^(pi//3)cos^(2)x dx=

If f(x) is an integrable function on [(pi)/(6),(pi)/(3)] and I_(1)=int_(pi//6)^(pi//3) sec^(2)thetaf(2 sin 2theta)d theta" and "I_(2)=int_(pi//6)^(pi//3) "cosec"^(2)theta f(2 sin2theta)d theta , then

int_(pi//6)^(pi//4)cosec 2x dx=

int_(pi//6)^(pi//3) sin(3x)dx=

int_(pi/6)^( pi/3)sin(3x)dx

int_(pi/6)^(pi/3) (sin x+ cos x)/(sqrt(sin 2x))dx

int_(pi//3)^(pi//2) dx/(sinx+ sin 2x)=

If I_(1) = int_(0)^(pi//2)ln (sin x)dx , I_(2)=int_(-pi//4)^(pi//4)ln (sin x + cos x)dx , then :

ML KHANNA-DEFINITE INTEGRAL-Problem set (4) (Multiple Choice Questions)
  1. The value of int(0)^(2pi) cos^(99) x dx is

    Text Solution

    |

  2. int(a)^(b) (f(x))/(f(x) +f(a+b-x))dx=

    Text Solution

    |

  3. int(1)^(5) (sqrt""x)/(sqrt""(6-x) + sqrt""x) dx=

    Text Solution

    |

  4. int(3)^(6) (sqrt""x)/(sqrt""(9-x) + sqrt""x) dx=

    Text Solution

    |

  5. If f(a+b-x)= f(x), then int(a)^(b) x f(x) dx is equal to

    Text Solution

    |

  6. If overset(b)underset(a)int (x^(n))/(x^(4)+(16-x)^(n))dx=6, then

    Text Solution

    |

  7. If f(3-x)= f(x), then int(1)^(2) xf(x) dx is equal to

    Text Solution

    |

  8. For any t in R and f be a continuous function Let I(1)= int(sin^(2)t...

    Text Solution

    |

  9. If f(x) is an integrable function in ((pi)/(6), (pi)/(3)) and I(1)= in...

    Text Solution

    |

  10. Let f be a positive function. Let I(1) int(1-k)^(k) x.f {x(1-x)} dx, I...

    Text Solution

    |

  11. If f(x)= (e^(x))/(1+e^(x)), I(1)= int(f(-a))^(f(a)) xg {x(1-x)}dx and ...

    Text Solution

    |

  12. The value of int(1//n)^((a n-1)//n) (sqrtx)/(sqrt(a-x) + sqrtx)dx is e...

    Text Solution

    |

  13. If [x] stands for the greatest integer function, the value of int(4)^(...

    Text Solution

    |

  14. int(pi//4)^(3pi//4) (dx)/(1+ cos x) is equal to

    Text Solution

    |

  15. int(-pi//2)^(pi//2) (cos x dx)/(1+ e^(x))=

    Text Solution

    |

  16. int(0)^(pi) (dx)/(1+2^(tan x))=

    Text Solution

    |

  17. int(-pi//2)^(pi//2) (pi^(sin x))/(1+ pi^(sin x))dx=

    Text Solution

    |

  18. The value of int(-pi//2)^(pi//2) (dx)/(e^(sin x) +1) is equal to

    Text Solution

    |

  19. int(0)^(pi) (dx)/(1+ 4^(cos x))=

    Text Solution

    |

  20. The value of the integral int(-pi)^(pi)(cos^(2)x)/(1+a^(x))"dx", where...

    Text Solution

    |