Home
Class 12
MATHS
int(0)^(pi) x f(sin x)dx= (pi)/(2) int(0...

`int_(0)^(pi) x f(sin x)dx= (pi)/(2) int_(0)^(pi) f(sin x)dx = pi int_(0)^(pi//2) f (sin x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the equality of the three integrals given in the question, we will denote the integrals as follows: Let: - \( I_1 = \int_{0}^{\pi} x f(\sin x) \, dx \) - \( I_2 = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) \, dx \) - \( I_3 = \pi \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \) We will show that \( I_1 = I_2 = I_3 \). ### Step 1: Evaluate \( I_1 \) Using the property of definite integrals, we have: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] For our case, we set \( a = \pi \). Therefore: \[ I_1 = \int_{0}^{\pi} x f(\sin x) \, dx = \int_{0}^{\pi} (\pi - x) f(\sin(\pi - x)) \, dx \] Since \( \sin(\pi - x) = \sin x \), we can rewrite this as: \[ I_1 = \int_{0}^{\pi} (\pi - x) f(\sin x) \, dx \] ### Step 2: Simplify \( I_1 \) Now, we can split \( I_1 \): \[ I_1 = \int_{0}^{\pi} \pi f(\sin x) \, dx - \int_{0}^{\pi} x f(\sin x) \, dx \] This gives us: \[ I_1 = \pi \int_{0}^{\pi} f(\sin x) \, dx - I_1 \] Adding \( I_1 \) to both sides: \[ 2I_1 = \pi \int_{0}^{\pi} f(\sin x) \, dx \] Dividing by 2: \[ I_1 = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) \, dx \] Thus, we have shown that: \[ I_1 = I_2 \] ### Step 3: Show \( I_2 = I_3 \) Now, we will show that \( I_2 = I_3 \). We use the property of definite integrals again: \[ \int_{0}^{2a} f(x) \, dx = 2 \int_{0}^{a} f(a - x) \, dx \] Setting \( a = \frac{\pi}{2} \): \[ I_2 = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) \, dx \] We can change the limits of integration for \( I_3 \): \[ I_3 = \pi \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \] Using the substitution \( u = \sin x \), we find: \[ du = \cos x \, dx \quad \text{and} \quad dx = \frac{du}{\sqrt{1-u^2}} \] The limits change from \( 0 \) to \( 1 \) as \( x \) goes from \( 0 \) to \( \frac{\pi}{2} \). Thus: \[ I_3 = \pi \int_{0}^{1} f(u) \, du \] Now, since \( \int_{0}^{\pi} f(\sin x) \, dx = 2 \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \), we can conclude: \[ I_2 = I_3 \] ### Conclusion We have shown that: \[ I_1 = I_2 = I_3 \] Thus, the original statement is proved.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (5) (Multiple Choice Questions)|69 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (4) (Multiple Choice Questions)|22 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi)xf(sin x)dx=(pi)/(2)int_(0)^( pi)f(sin x)dx

int_(0)^(pi) sin 3x dx

Knowledge Check

  • int_(0)^(pi) dx/(1-sin x)=

    A
    0
    B
    1
    C
    2
    D
    `-2`
  • int_(0)^(pi) [2sin x]dx=

    A
    `2pi//3`
    B
    `-5pi//3`
    C
    `-pi`
    D
    `-2pi`
  • int_(0)^(pi) [2 sin x] dx =

    A
    `(2pi)/(3)`
    B
    `-(5pi)/(3)`
    C
    `-pi`
    D
    `-2pi`
  • Similar Questions

    Explore conceptually related problems

    int_(0)^( pi/2)(sin x)*dx

    int_(0)^( pi/4)sin|x|dx

    Prove the equality int_(0)^(pi) f (sin x) dx = 2 int_(0)^(pi//2) f (sin x) dx

    int_0^(pi/2) sin x dx

    If int_(0)^(pi)x f(sin x) dx = a int_(0)^(pi)f (sin x) dx , then a =