Home
Class 12
MATHS
int(2)^(4) x sqrt(6-x) dx= …....

`int_(2)^(4) x sqrt(6-x) dx`= ….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{2}^{4} x \sqrt{6 - x} \, dx \), we can use a property of definite integrals. The property states that: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In our case, \( a = 2 \) and \( b = 4 \), so \( a + b = 6 \). Thus, we can rewrite the integral as follows: \[ I = \int_{2}^{4} x \sqrt{6 - x} \, dx = \int_{2}^{4} (6 - x) \sqrt{6 - (6 - x)} \, dx \] This simplifies to: \[ I = \int_{2}^{4} (6 - x) \sqrt{x} \, dx \] Now, we can express \( I \) in terms of two integrals: \[ I = \int_{2}^{4} x \sqrt{6 - x} \, dx + \int_{2}^{4} (6 - x) \sqrt{x} \, dx \] Let’s denote the second integral as \( J \): \[ J = \int_{2}^{4} (6 - x) \sqrt{x} \, dx \] Thus, we have: \[ I = I + J \] To find \( J \), we can compute: \[ J = \int_{2}^{4} (6\sqrt{x} - x\sqrt{x}) \, dx \] This can be split into two separate integrals: \[ J = 6 \int_{2}^{4} \sqrt{x} \, dx - \int_{2}^{4} x^{3/2} \, dx \] Now, we compute each integral separately. 1. **Calculating \( \int_{2}^{4} \sqrt{x} \, dx \)**: Using the formula for the integral of \( x^n \): \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} \] For \( n = \frac{1}{2} \): \[ \int \sqrt{x} \, dx = \frac{x^{3/2}}{3/2} = \frac{2}{3} x^{3/2} \] Thus, \[ \int_{2}^{4} \sqrt{x} \, dx = \left[ \frac{2}{3} x^{3/2} \right]_{2}^{4} = \frac{2}{3} \left( 4^{3/2} - 2^{3/2} \right) \] Calculating the values: \[ 4^{3/2} = 8 \quad \text{and} \quad 2^{3/2} = 2\sqrt{2} \] So, \[ \int_{2}^{4} \sqrt{x} \, dx = \frac{2}{3} (8 - 2\sqrt{2}) = \frac{16}{3} - \frac{4\sqrt{2}}{3} \] 2. **Calculating \( \int_{2}^{4} x^{3/2} \, dx \)**: Using the same formula: \[ \int x^{3/2} \, dx = \frac{x^{5/2}}{5/2} = \frac{2}{5} x^{5/2} \] Thus, \[ \int_{2}^{4} x^{3/2} \, dx = \left[ \frac{2}{5} x^{5/2} \right]_{2}^{4} = \frac{2}{5} (4^{5/2} - 2^{5/2}) \] Calculating the values: \[ 4^{5/2} = 32 \quad \text{and} \quad 2^{5/2} = 4\sqrt{2} \] So, \[ \int_{2}^{4} x^{3/2} \, dx = \frac{2}{5} (32 - 4\sqrt{2}) = \frac{64}{5} - \frac{8\sqrt{2}}{5} \] Now substituting back into \( J \): \[ J = 6 \left( \frac{16}{3} - \frac{4\sqrt{2}}{3} \right) - \left( \frac{64}{5} - \frac{8\sqrt{2}}{5} \right) \] Calculating \( J \): \[ J = \frac{96}{3} - \frac{24\sqrt{2}}{3} - \frac{64}{5} + \frac{8\sqrt{2}}{5} \] Finding a common denominator (15): \[ J = \frac{480}{15} - \frac{120\sqrt{2}}{15} - \frac{192}{15} + \frac{24\sqrt{2}}{15} \] Combining terms: \[ J = \frac{288}{15} - \frac{96\sqrt{2}}{15} = \frac{288 - 96\sqrt{2}}{15} \] Now substituting back into \( I \): \[ I = I + J \implies 2I = J \implies I = \frac{1}{2} J \] Calculating \( I \): \[ I = \frac{1}{2} \cdot \frac{288 - 96\sqrt{2}}{15} = \frac{288 - 96\sqrt{2}}{30} \] Thus, the final answer is: \[ I = \frac{32(3 - \sqrt{2})}{5} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (5) (Multiple Choice Questions)|69 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) True and false|3 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(4)x sqrt(x) dx=

int_(1)^(4)x sqrt(x)dx = ?

int_(2)^(4)sqrt(x)dx

int_(0)^(2)sqrt(6x+4)dx

int_(-1)^(2) sqrt(5x+6)dx

I=int_(0)^(2)x sqrt(4-x^(2))dx

int_(0)^(4)(dx)/(sqrt(4-x))

- int_(4)^(0)(sqrt(x)-2)dx

int_(0)^(4)(dx)/(x+sqrt(x))

int (4x-1) sqrt(x^2-x-2) dx