Home
Class 12
MATHS
int(pi//4)^(3pi//4) (dx)/(1+ cos x) is e...

`int_(pi//4)^(3pi//4) (dx)/(1+ cos x)` is equal to

A

2

B

`-2`

C

`(1)/(2)`

D

`-(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x} \] we can use a property of definite integrals. The property states that: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] In this case, we have \( a = \frac{\pi}{4} \) and \( b = \frac{3\pi}{4} \). Therefore, \( a + b = \frac{\pi}{4} + \frac{3\pi}{4} = \pi \). Now, we can write: \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x} = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos(\pi - x)} \] Using the identity \( \cos(\pi - x) = -\cos x \), we can rewrite the integral: \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 - \cos x} \] Now we have two expressions for \( I \): 1. \( I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x} \) 2. \( I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 - \cos x} \) Adding these two equations gives: \[ 2I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \left( \frac{1}{1 + \cos x} + \frac{1}{1 - \cos x} \right) dx \] Next, we simplify the integrand: \[ \frac{1}{1 + \cos x} + \frac{1}{1 - \cos x} = \frac{(1 - \cos x) + (1 + \cos x)}{(1 + \cos x)(1 - \cos x)} = \frac{2}{1 - \cos^2 x} = \frac{2}{\sin^2 x} \] Thus, we have: \[ 2I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{2}{\sin^2 x} \, dx \] This simplifies to: \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1}{\sin^2 x} \, dx \] The integral of \( \frac{1}{\sin^2 x} \) is \( -\cot x \), so we compute: \[ I = -\cot x \bigg|_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \] Calculating the limits: \[ I = -\left( \cot\left(\frac{3\pi}{4}\right) - \cot\left(\frac{\pi}{4}\right) \right) \] Knowing that \( \cot\left(\frac{3\pi}{4}\right) = -1 \) and \( \cot\left(\frac{\pi}{4}\right) = 1 \): \[ I = -(-1 - 1) = -(-2) = 2 \] Thus, the final answer is: \[ \boxed{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) True and false|3 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(pi//4)^(3pi//4)(dx)/(1+cosx) is equal to

int_(pi//4)^(pi//2)(dx)/((1-cos2x))

Knowledge Check

  • int_(-pi//4)^(pi//4)(dx)/(1+ cos 2x) is equal to

    A
    1
    B
    2
    C
    3
    D
    4
  • int_(pi//4)^(3pi//4)(dx)/(1+cosx) is equal to

    A
    2
    B
    `-2`
    C
    `(1)/(2)`
    D
    `-(1)/(2)`
  • The value of int_(pi//4)^(3pi//4) (x)/(1+sin x) dx is equal to

    A
    `(sqrt(2)-1)pi`
    B
    `(sqrt(2+1))pi`
    C
    `pi`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    The value of int_(pi/4)^((3pi)/4)(cos x)/(1-cos x)dx is equal to (k-(pi)/(2)) then k=

    The Integral int_((pi)/(4))^((3 pi)/(4))(dx)/(1+cos x) is equal to:

    int_(pi//4)^(3pi//4)(1)/(1+cosx)dx is equal to

    int_(-pi//4)^(pi//4) dx/(1-sin x)=

    int_(-pi//4)^(pi//4) dx/(1+sin x)=