Home
Class 12
MATHS
If F(x)= (1)/(x^(2)) int(4)^(x) [4t^(2)-...

If `F(x)= (1)/(x^(2)) int_(4)^(x) [4t^(2)- 2F' (t)]dt`, then F'(4) equals

A

32

B

`(32)/(3)`

C

`(32)/(9)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( F'(4) \) given the expression for \( F(x) \): \[ F(x) = \frac{1}{x^2} \int_{4}^{x} \left( 4t^2 - 2F'(t) \right) dt \] ### Step 1: Differentiate \( F(x) \) with respect to \( x \) Using the product rule and the Fundamental Theorem of Calculus, we differentiate \( F(x) \): \[ F'(x) = \frac{d}{dx} \left( \frac{1}{x^2} \right) \int_{4}^{x} \left( 4t^2 - 2F'(t) \right) dt + \frac{1}{x^2} \cdot \left( 4x^2 - 2F'(x) \right) \] ### Step 2: Calculate \( \frac{d}{dx} \left( \frac{1}{x^2} \right) \) The derivative of \( \frac{1}{x^2} \) is: \[ \frac{d}{dx} \left( \frac{1}{x^2} \right) = -\frac{2}{x^3} \] ### Step 3: Substitute into the derivative expression Now substituting this back into the expression for \( F'(x) \): \[ F'(x) = -\frac{2}{x^3} \int_{4}^{x} \left( 4t^2 - 2F'(t) \right) dt + \frac{1}{x^2} \left( 4x^2 - 2F'(x) \right) \] ### Step 4: Evaluate \( F'(4) \) To find \( F'(4) \), we substitute \( x = 4 \): \[ F'(4) = -\frac{2}{4^3} \int_{4}^{4} \left( 4t^2 - 2F'(t) \right) dt + \frac{1}{4^2} \left( 4 \cdot 4^2 - 2F'(4) \right) \] Since the integral from 4 to 4 is zero: \[ F'(4) = 0 + \frac{1}{16} \left( 64 - 2F'(4) \right) \] ### Step 5: Simplify the equation This simplifies to: \[ F'(4) = \frac{1}{16} \cdot 64 - \frac{1}{8} F'(4) \] \[ F'(4) = 4 - \frac{1}{8} F'(4) \] ### Step 6: Solve for \( F'(4) \) Now, we can isolate \( F'(4) \): \[ F'(4) + \frac{1}{8} F'(4) = 4 \] \[ \frac{9}{8} F'(4) = 4 \] \[ F'(4) = 4 \cdot \frac{8}{9} = \frac{32}{9} \] ### Final Answer Thus, the value of \( F'(4) \) is: \[ \boxed{\frac{32}{9}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(1)/(x^(2))int_(4)^(x)(4t^(2)-2f'(t)) dt,then f'(4) is equal to:

If int_(x^(2))^(x^(4))sin sqrt(t)dt then f'(x) equals

Knowledge Check

  • Let f (x) =(1)/(x ^(2)) int _(4)^(x) (4t ^(2) -2 f '(t) dt, find 9f'(4)

    A
    16
    B
    4
    C
    8
    D
    32
  • If f(x)=1/x^2int_4^x[4t^2-2f'(t)]dt , then f'(4) is equal to

    A
    32
    B
    `(32)/3`
    C
    `(32)/9`
    D
    None
  • f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to :

    A
    0
    B
    2e
    C
    `2e^(2)-2`
    D
    `e^(2)-e`
  • Similar Questions

    Explore conceptually related problems

    If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

    Let F:[3,5] rarr R be a twice differentiable function on (3,5) such that F(x)= e^(-x) int_(3)^(x) (3t^(2)+2t+4F'(t)) dt . If F'(4)= (alpha e^(beta)-224)/((e^(beta)-4)^(2)) , then alpha+beta is equal to _____

    If f(x) =int_(1//x^(2) ) ^(x^2) cos sqrt(t) dt , then f'(1) is equal to

    Let f:(0 , oo) rarr R and F(x)= int_(0)^(x) f(t) dt . If F(x^(2)) =x^(2) (1+x) , then f(4) equals

    If f(x) is differentiable function and f(x)=x^(2)+int_(0)^(x) e^(-t) (x-t)dt ,then f)-t) equals to