Home
Class 12
MATHS
If f(t)= int(t^(2))^(t^(3)) (1)/(log x) ...

If `f(t)= int_(t^(2))^(t^(3)) (1)/(log x) dx`, then f'(t)= ….

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(t) \) for the function defined by the integral \[ f(t) = \int_{t^2}^{t^3} \frac{1}{\log x} \, dx, \] we will use the Leibniz rule for differentiating under the integral sign. The Leibniz rule states that if you have an integral of the form \[ I(t) = \int_{a(t)}^{b(t)} f(x) \, dx, \] then the derivative with respect to \( t \) is given by: \[ I'(t) = f(b(t)) \cdot b'(t) - f(a(t)) \cdot a'(t). \] ### Step-by-step Solution: 1. **Identify the components**: - Here, \( a(t) = t^2 \) and \( b(t) = t^3 \). - The function inside the integral is \( f(x) = \frac{1}{\log x} \). 2. **Calculate the derivatives of the limits**: - The derivative of the upper limit \( b(t) \) is: \[ b'(t) = \frac{d}{dt}(t^3) = 3t^2. \] - The derivative of the lower limit \( a(t) \) is: \[ a'(t) = \frac{d}{dt}(t^2) = 2t. \] 3. **Evaluate the function at the limits**: - Evaluate \( f(b(t)) \): \[ f(b(t)) = f(t^3) = \frac{1}{\log(t^3)} = \frac{1}{3 \log t}. \] - Evaluate \( f(a(t)) \): \[ f(a(t)) = f(t^2) = \frac{1}{\log(t^2)} = \frac{1}{2 \log t}. \] 4. **Apply the Leibniz rule**: - Substitute into the Leibniz rule: \[ f'(t) = f(b(t)) \cdot b'(t) - f(a(t)) \cdot a'(t). \] - This gives: \[ f'(t) = \left(\frac{1}{3 \log t}\right)(3t^2) - \left(\frac{1}{2 \log t}\right)(2t). \] 5. **Simplify the expression**: - Simplifying the first term: \[ \frac{3t^2}{3 \log t} = \frac{t^2}{\log t}. \] - Simplifying the second term: \[ \frac{2t}{2 \log t} = \frac{t}{\log t}. \] - Therefore, we have: \[ f'(t) = \frac{t^2}{\log t} - \frac{t}{\log t}. \] 6. **Combine the terms**: - Combine the fractions: \[ f'(t) = \frac{t^2 - t}{\log t} = \frac{t(t - 1)}{\log t}. \] ### Final Answer: \[ f'(t) = \frac{t(t - 1)}{\log t}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (5) (Multiple Choice Questions)|69 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

If F(x)=int_(e^(2x))^(e^(3x))(t)/(log_(e)t)dt, then the first derivative of F(x) with respect to ln x at x=ln2 is

If f(x)=int_(1)^(x)(logt)/(1+t+t^(2)) , AAx ge 1 , then f(2) is equal to

Knowledge Check

  • If F(x) =int_(x^(2))^(x^(3)) log t dt (x gt 0) , then F'(x) equals

    A
    `(9x^(2)-4x)log x`
    B
    `(4x-9x^(2))log x`
    C
    `(9x^(2)+4x)logx`
    D
    none of these
  • If f(x) = int_(e)^(e^(x) ) log ((x)/( log t))dt , then the value of (3f'(3)) / e

    A
    `- 3 log 3`
    B
    `3 log 3`
    C
    `e^(3) - e`
    D
    `e^(2) -1`
  • If F(x)=int_(1)^(x) f(t) dt ,where f(t)=int_(1)^(t^(2))(sqrt(1+u^(4)))/(u) du , then the value of F''(2) equals to

    A
    `(7)/(4sqrt17`
    B
    `(15)/(sqrt17)`
    C
    `sqrt(257)`
    D
    `(15sqrt17)/(68)`
  • Similar Questions

    Explore conceptually related problems

    If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

    int_(0)^( If )(f(t))dt=x+int_(x)^(1)(t^(2)*f(t))dt+(pi)/(4)-1 then the value of the integral int_(-1)^(1)(f(x))dx is equal to

    f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to :

    Let g(t) = int_(x_(1))^(x^(2))f(t,x) dx . Then g'(t) = int_(x_(1))^(x^(2))(del)/(delt) (f(t,x))dx , Consider f(x) = int_(0)^(pi) (ln(1+xcostheta))/(costheta) d theta . The number of critical point of f(x) , in the interior of its domain, is

    Statement-1: If f(x)=int_(1)^(x) (log_(e )t)/(1+t+t^(2))dt , then f(x)=f((1)/(x)) for all x gr 0 . Statement-2:If f(x) =int_(1)^(x) (log_(e )t)/(1+t)dt , then f(x)+f((1)/(x))=((log_(e )x)^(2))/(2)