Home
Class 12
MATHS
lim(n rarr oo) [(1)/(n+1) + (1)/(n+2) + ...

`lim_(n rarr oo) [(1)/(n+1) + (1)/(n+2) + (1)/(n+3) + …+ (1)/(2n)]`=

A

log 2

B

`"log" (1)/(2)`

C

`(1)/(2)`

D

`oo`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(1-(2)/(n))^(n)

lim_(n rarr oo)((-1)^(n)n)/(n+1)

Knowledge Check

  • lim_(n rarr oo) [(1)/(n+1) + (1)/(n+2) + …+ (1)/(6n)] =

    A
    log 4
    B
    log 6
    C
    log 2
    D
    none
  • lim_(n rarr oo) (1)/(n) [(n+1) (n+2)…(n+n)]^(1//n) =

    A
    2e
    B
    e
    C
    2/e
    D
    4/e
  • Similar Questions

    Explore conceptually related problems

    lim_ (n rarr oo) ((1) / (n + 1) + (1) / (n + 2) ++ (1) / (2n))

    lim_ (n rarr oo) ((1) / (n + 1) + (1) / (n + 2) + (1) / (n + 3) + ...... + (1) / (6n ))

    lim_ (n rarr oo) [1+ (2) / (n)] ^ (2n) =

    lim_ (n rarr oo) [(1) / (1.2) + (1) / (2.3) + (1) / (3.4) + ... + (1) / (n (n + 1))] =

    lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

    lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)