Home
Class 12
MATHS
1 + (2)/(1.2.3) + (2)/(3.4.5) + (2)/(5.6...

`1 + (2)/(1.2.3) + (2)/(3.4.5) + (2)/(5.6.7) + ... = `

A

`log_(3) 4`

B

`2 log_(e) 2`

C

`2 log 3`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given series \( S = 1 + \frac{2}{1 \cdot 2 \cdot 3} + \frac{2}{3 \cdot 4 \cdot 5} + \frac{2}{5 \cdot 6 \cdot 7} + \ldots \), we will analyze the pattern and derive a closed form. ### Step 1: Identify the Pattern The series can be rewritten in terms of factorials: \[ S = 1 + \sum_{n=1}^{\infty} \frac{2}{(2n-1)(2n)(2n+1)} \] This is because the denominators can be expressed as products of three consecutive integers. ### Step 2: Simplify the General Term We can simplify the general term: \[ \frac{2}{(2n-1)(2n)(2n+1)} = \frac{2}{2n(2n-1)(2n+1)} = \frac{2}{2n} \cdot \frac{1}{(2n-1)(2n+1)} = \frac{1}{n} \cdot \frac{1}{(2n-1)(2n+1)} \] ### Step 3: Use Partial Fraction Decomposition Next, we can use partial fraction decomposition on the term \( \frac{1}{(2n-1)(2n+1)} \): \[ \frac{1}{(2n-1)(2n+1)} = \frac{A}{2n-1} + \frac{B}{2n+1} \] Multiplying through by the denominator gives: \[ 1 = A(2n+1) + B(2n-1) \] Setting \( n = \frac{1}{2} \) gives \( A = \frac{1}{2} \) and setting \( n = -\frac{1}{2} \) gives \( B = -\frac{1}{2} \). Thus: \[ \frac{1}{(2n-1)(2n+1)} = \frac{1}{2} \left( \frac{1}{2n-1} - \frac{1}{2n+1} \right) \] ### Step 4: Rewrite the Series Substituting back into the series: \[ S = 1 + \sum_{n=1}^{\infty} \frac{1}{n} \cdot \frac{1}{(2n-1)(2n+1)} = 1 + \sum_{n=1}^{\infty} \frac{1}{2} \left( \frac{1}{2n-1} - \frac{1}{2n+1} \right) \] ### Step 5: Recognize the Telescoping Series This sum is telescoping: \[ S = 1 + \frac{1}{2} \left( \sum_{n=1}^{\infty} \left( \frac{1}{2n-1} - \frac{1}{2n+1} \right) \right) \] The terms cancel out, leading to: \[ S = 1 + \frac{1}{2} \cdot 1 = 1 + \frac{1}{2} = \frac{3}{2} \] ### Step 6: Final Result Thus, the value of the series is: \[ S = 2 \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE)|7 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

The sum of the series (5)/(1.2.3)+(7)/(3.4.5)+(9)/(5.6.7)+.... is equal to

The value of (3)/(4) xx 2 (2)/(3) -: (5)/(9) " of " 1(1)/(5) + (2)/(23) xx 3 (5)/(6) -: (2)/(7) " of " 2(1)/(3) is :

(5)/(6) -: (6)/(7) xx ? - (8)/(9) -: 1 (2)/(5) -: (3)/(4) xx 3 (1)/(3) = 2(7)/(9)

Which is greaster: (2)/(7) of (3)/(4) or (3)/(5) of (5)/(8)( ii) (1)/(2) of (6)/(7) or (2)/(3) of (3)/(7)

(3)/(4)(1+(1)/(3))(1+(2)/(3))(1-(2)/(5))(1+(6)/(7))(1-(12)/(13))=?(1)/(5)( b )(1)/(6)(c)(1)/(7) (d) None of these

1+(1)/(3.2^(2))+(1)/(5.2^(4))+(1)/(7.2^(6))+.........=

Solve (a) 2/3 + 1/7 (b) 3/10 + 7/15 (c) 4/9 + 2/7 (d) 5/7 + 1/3 (e) 2/5 + 1/6 (f) 4/5 + 2/3 (g) (3/4) (1/3) (h) (5/6) (1/3) (1) 2/3 + 3/4 + 1/2 (1) 1/2 + 1/3 = 1/6 (k) (1) 1/3 + (3) 2/3 (1) (4) 2/3 +(3) 1/4 (m) ((16)/5))(7/5)

What will come next in the series given below ? 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3 4 5 1) 1 2) 5 3) 6 4) 2 5) None of these

ML KHANNA-EXPONENTIAL AND LOGARITHMIC SERIES -Problem Set (2) (MULTIPLE CHOICE QUESTIONS )
  1. The sum of the series (1)/(2.3) + (1)/(4.5) + (1)/(6.7) + ...oo=

    Text Solution

    |

  2. (1)/(1.3) + (1)/(2.5) + (1)/(3.7) + (1)/(4.9) +... is equal to

    Text Solution

    |

  3. 1 + (2)/(1.2.3) + (2)/(3.4.5) + (2)/(5.6.7) + ... =

    Text Solution

    |

  4. 1 /(1.3.5) + (1)/(3.5.7) + (1)/(5.7.9) +...oo

    Text Solution

    |

  5. Sum of the series 1/(1*2*3)+5/(3*4*5)+9/(5*6*7 )+... is equal to

    Text Solution

    |

  6. Sum of n terms of the series 1/(1.2.3.4.)+1/(2.3.4.5) +1/(3.4.5.6)+.....

    Text Solution

    |

  7. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  8. The coefficient of x^(n) in the exansion of log(e)(1+3x+2x^(2)) is

    Text Solution

    |

  9. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |

  10. 2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x...

    Text Solution

    |

  11. 2{(m-n)/(m+n)+1/3((m-n)/(m+n))^(3)+1/5((m-n)/(m+n))^(5)+..} is equals ...

    Text Solution

    |

  12. The sum of the series 1 + ((1)/(2) + (1)/(3)) (1)/(4) + ((1)/(4) + ...

    Text Solution

    |

  13. The series expansion of log{(1+x)^(1+x)(1-x)^(1-x)} is

    Text Solution

    |

  14. The coefficient of x^(6) in the expansion of log{(1+x)^(1+x)(1-x)^(...

    Text Solution

    |

  15. 2log x-log(x+1)-log(x-1) is equals to

    Text Solution

    |

  16. The coefficient of x^(n), where n = 3k in the expansion of log (1 + x ...

    Text Solution

    |

  17. The coefficient of x^(n) in the expansion of log(e)((1)/(1+x+x^(2)+x^(...

    Text Solution

    |

  18. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+… then a(3)+a(6)+a(9)+.....

    Text Solution

    |

  19. The coefficient of n^(-r) in the expansion of log(10)((n)/(n-1)) is

    Text Solution

    |

  20. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+… then a(3)+a(6)+a(9)+.....

    Text Solution

    |