Home
Class 12
MATHS
log (n +1) - log n = 2[(1)/(2n+1) + ...

`log (n +1) - log n`
` = 2[(1)/(2n+1) + (1)/(3(2n+1)^(3)) + (1)/(5(2n+1)^(5))+...]`

Text Solution

Verified by Experts

The correct Answer is:
T
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS )|28 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

log_(e) (n+1) - log_(e) (n-1) = 2 [(1)/(n) + (1)/(3) . (1)/(n^(3)) + (1)/(5). (1)/(n^(5)) + ...]

If (1)/("log"_(2)a) + (1)/("log"_(4)a) + (1)/("log"_(8)a) + (1)/("log"_(16)a) + …. + (1)/("log"_(2^(n))a) = (n(n+1)/(lambda)) then lambda equals

Knowledge Check

  • If Lt_(n rarr oo) Sigma (log (n+r) - log n)/(n)= 2 (log 2- (1)/(2)) then Lt_(n rarr oo) (1)/(n^(lamda)) [(n+1)^(lamda) (n+2)^(lamda) ..(n+n)^(lamda)]^(1//n) =

    A
    `(4lamda)/(e )`
    B
    `((4)/(3))^(1//lamda)`
    C
    `((4)/(e ))^(lamda)`
    D
    `((e )/(4))^(lamda)`
  • Given that lim_(nto oo) sum_(r=1)^(n) (log (r+n)-log n)/(n)=2(log 2-(1)/(2)) , lim_(n to oo) (1)/(n^k)[(n+1)^k(n+2)^k.....(n+n)^k]^(1//n) , is

    A
    `(4k)/(e)`
    B
    `ksqrt((4)/(e)`
    C
    `((4)/(e))^k`
    D
    `((e)/(4))^k`.
  • Let n = 2006! Then (1)/(log_(2)n) + (1)/(log_(3)n) + ... + (1)/(log_(2006)n) =

    A
    2006
    B
    2005
    C
    2005!
    D
    1
  • Similar Questions

    Explore conceptually related problems

    1 + ((log n)^(2))/(2!) + ((log n)^(4))/(4!) + ...oo=

    (1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)=

    The value of (1)/(log_(3)n)+(1)/(log_(4)n) + (1)/(log_(5)n) + ... + (1)/(log_(8)n) is ______.

    What is the value of (1)/(log_(2)n)+(1)/(log_(3)n)+ . . .+(1)/(log_(40)n) ?

    If = (2017) ! Then what is (1)/(log_(2)n)+(1)/(log_(3)n) + (1)/(log_(4)n)+.........(1)/(log_(2017)) equal to ?