Home
Class 12
MATHS
If ABC D is a cyclic quadrilateral, then...

If ABC D is a cyclic quadrilateral, then find the value of `sinA+sinB-sinC-sinD`
If `A+B+C=(pi)/(2)`, then find the value of `tanA tanB+tanBtanC+tanC tanA`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems step by step, we will break down each part of the question. ### Problem 1: Finding the value of \( \sin A + \sin B - \sin C - \sin D \) 1. **Understand the properties of a cyclic quadrilateral**: In a cyclic quadrilateral, the sum of opposite angles is \( 180^\circ \). Therefore, we have: \[ A + D = 180^\circ \quad \text{(1)} \] \[ B + C = 180^\circ \quad \text{(2)} \] 2. **Express \( C \) and \( D \) in terms of \( A \) and \( B \)**: From equation (1), we can express \( D \): \[ D = 180^\circ - A \] From equation (2), we can express \( C \): \[ C = 180^\circ - B \] 3. **Substitute \( C \) and \( D \) into the expression**: We need to evaluate: \[ \sin A + \sin B - \sin C - \sin D \] Substituting \( C \) and \( D \): \[ = \sin A + \sin B - \sin(180^\circ - B) - \sin(180^\circ - A) \] 4. **Use the sine property**: We know that \( \sin(180^\circ - \theta) = \sin \theta \). Therefore: \[ = \sin A + \sin B - \sin B - \sin A \] 5. **Simplify the expression**: \[ = \sin A - \sin A + \sin B - \sin B = 0 \] ### Conclusion for Problem 1: The value of \( \sin A + \sin B - \sin C - \sin D \) is \( 0 \). --- ### Problem 2: Finding the value of \( \tan A \tan B + \tan B \tan C + \tan C \tan A \) 1. **Given condition**: We know that: \[ A + B + C = \frac{\pi}{2} \] 2. **Use the tangent addition formula**: The formula for \( \tan(A + B + C) \) is: \[ \tan(A + B + C) = \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - (\tan A \tan B + \tan B \tan C + \tan C \tan A)} \] 3. **Substituting \( A + B + C = \frac{\pi}{2} \)**: Since \( \tan\left(\frac{\pi}{2}\right) \) is undefined (approaches infinity), we can set the denominator to zero: \[ 1 - (\tan A \tan B + \tan B \tan C + \tan C \tan A) = 0 \] Thus, \[ \tan A \tan B + \tan B \tan C + \tan C \tan A = 1 \] ### Conclusion for Problem 2: The value of \( \tan A \tan B + \tan B \tan C + \tan C \tan A \) is \( 1 \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-01|17 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-02|19 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX -JA|8 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

If ABCD is a cyclic quadrilateral then find the value of sinA+sinB-sinC-sinD

If ABCD is a cyclic quadrilateral, then find the value of sinA + sinB -sinC - sinD

If A+B+C=pi/2 , then find the value of tanAtanB+tanBtanC+tanCtanA

In Figure, A B C D is a cyclic quadrilateral. Find the value of a and b.

If cosA=7/(25) , find the value of tanA+cotA .

If A+B+C= pi/2 , show that : tanA tanB + tanB tanC + tanC tanA=1

If tanA=5/(12) , find the value of (sinA+cosA)secA .

if Agt0,Bgt0 and A+B= pi/3, then the maximum value of tanA*tanB is

If tanA=m/(m-1) and tanB=1/(2m-1) , find the value of tan(A-B) .

If sin A=sqrt3/2 and cos B = sqrt3/2 , find the value of : (tanA-tanB)/(1+tanAtanB)